Spaces:
Sleeping
Sleeping
File size: 16,636 Bytes
789726d de91506 789726d d17524e 789726d 677d102 789726d 677d102 cffd56f d17524e 677d102 de91506 789726d 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 677d102 de91506 d17524e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect # Ensure this package is installed
# β
Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"β
Using device: {device}") # Debugging info
# β
Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
# β
Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
# β
Initialize Session State Variables (Ensuring Chat History Persists)
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! I'm HAL, your NASA AI Assistant. You can speak to me directly or type your questions. How can I help you today?"}]
if "auto_speak" not in st.session_state:
st.session_state.auto_speak = True
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature, # π₯ Lowered temperature for more factual and structured responses
token=HF_TOKEN,
task="text-generation",
device=-1 if device == "cpu" else 0 # β
Force CPU (-1) or GPU (0)
)
# β
Ensure English Responses
def ensure_english(text):
try:
detected_lang = detect(text)
if detected_lang != "en":
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
except:
return "β οΈ Language detection failed. Please ask your question again."
return text
# β
Main Response Function (Fixing Repetition & Context)
def get_response(system_message, chat_history, user_text, max_new_tokens=800):
# β
Ensure conversation history is included correctly
filtered_history = "\n".join(
f"{msg['role'].capitalize()}: {msg['content']}"
for msg in chat_history[-5:] # β
Only keep the last 5 exchanges to prevent overflow
)
prompt = PromptTemplate.from_template(
"[INST] You are a highly knowledgeable AI assistant. Answer concisely, avoid repetition, and structure responses well."
"\n\nCONTEXT:\n{chat_history}\n"
"\nLATEST USER INPUT:\nUser: {user_text}\n"
"\n[END CONTEXT]\n"
"Assistant:"
)
# β
Invoke Hugging Face Model
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3) # π₯ Lowered temperature
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
# Clean up the response - remove any "HAL:" prefix if present
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
response = ensure_english(response)
if not response:
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
# β
Update conversation history
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
# β
Keep only last 10 exchanges to prevent unnecessary repetition
return response, chat_history[-10:]
# β
NASA API Function to get space data
def get_nasa_data(query):
try:
if "apod" in query.lower() or "picture of the day" in query.lower():
response = requests.get(f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}")
if response.status_code == 200:
data = response.json()
return {
"title": data.get("title", "NASA Image"),
"date": data.get("date", ""),
"explanation": data.get("explanation", ""),
"url": data.get("url", "")
}
return None
except Exception as e:
print(f"Error fetching NASA data: {e}")
return None
# β
Streamlit UI
st.title("π HAL - NASA AI Assistant")
# β
Add styles and speech recognition JavaScript
st.markdown("""
<style>
.user-msg, .assistant-msg {
padding: 11px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
text-align: justify;
}
.user-msg { background-color: #696969; color: white; }
.assistant-msg { background-color: #333333; color: white; }
.container { display: flex; flex-direction: column; align-items: flex-start; }
.speak-button {
background-color: #2196F3;
border: none;
color: grey;
padding: 5px 10px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 12px;
margin: 2px 2px;
cursor: pointer;
border-radius: 12px;
}
.voice-indicator {
display: inline-block;
width: 12px;
height: 12px;
border-radius: 50%;
margin-left: 8px;
vertical-align: middle;
background-color: #ccc;
}
.voice-indicator.active {
background-color: #4CAF50;
animation: pulse 1.5s infinite;
}
.status-bar {
padding: 6px 12px;
border-radius: 5px;
background-color: #f1f1f1;
display: flex;
align-items: center;
margin-bottom: 10px;
font-size: 14px;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
</style>
<script>
// Speech Recognition Setup with continuous mode
let recognition;
let isListening = false;
let silenceTimer;
let lastSpeechTime = Date.now();
let lastTranscript = '';
const SILENCE_THRESHOLD = 3000; // Submit after 3 seconds of silence
function setupSpeechRecognition() {
try {
window.SpeechRecognition = window.SpeechRecognition || window.webkitSpeechRecognition;
recognition = new SpeechRecognition();
recognition.lang = 'en-US';
recognition.interimResults = true;
recognition.continuous = true;
recognition.onstart = function() {
isListening = true;
document.getElementById('voice-indicator').classList.add('active');
document.getElementById('voice-status').textContent = 'Listening...';
};
recognition.onresult = function(event) {
lastSpeechTime = Date.now();
clearTimeout(silenceTimer);
// Get the latest transcript
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + ' ';
} else {
interimTranscript += transcript;
}
}
// Update the hidden input with the latest transcript
const speechResult = (finalTranscript || interimTranscript).trim();
if (speechResult && speechResult !== lastTranscript) {
document.getElementById('speech-result').value = speechResult;
document.getElementById('voice-status').textContent = 'I heard: ' + speechResult;
lastTranscript = speechResult;
// Set a timer to submit after silence
silenceTimer = setTimeout(() => {
if (speechResult) {
document.getElementById('submit-speech').click();
lastTranscript = '';
document.getElementById('speech-result').value = '';
}
}, SILENCE_THRESHOLD);
}
};
recognition.onerror = function(event) {
console.error('Speech recognition error:', event.error);
if (event.error === 'no-speech') {
// Just restart listening if there was no speech detected
restartRecognition();
} else {
isListening = false;
document.getElementById('voice-indicator').classList.remove('active');
document.getElementById('voice-status').textContent = 'Voice recognition paused. Click to restart.';
}
};
recognition.onend = function() {
// Auto restart if it ends unintentionally
if (isListening) {
restartRecognition();
} else {
document.getElementById('voice-indicator').classList.remove('active');
document.getElementById('voice-status').textContent = 'Voice recognition disabled.';
}
};
return true;
} catch (error) {
console.error('Speech recognition not supported:', error);
document.getElementById('voice-status').textContent = 'Voice recognition not supported in this browser.';
return false;
}
}
function toggleVoiceRecognition() {
if (!recognition) {
if (!setupSpeechRecognition()) {
return;
}
}
if (isListening) {
recognition.stop();
isListening = false;
document.getElementById('voice-indicator').classList.remove('active');
document.getElementById('voice-status').textContent = 'Voice recognition paused. Click to restart.';
} else {
startRecognition();
}
}
function startRecognition() {
try {
recognition.start();
document.getElementById('voice-status').textContent = 'Listening...';
} catch (e) {
console.error('Error starting recognition:', e);
setTimeout(startRecognition, 200);
}
}
function restartRecognition() {
try {
recognition.stop();
} catch (e) {}
setTimeout(startRecognition, 200);
}
// Text-to-Speech functionality
function speakText(text) {
const utterance = new SpeechSynthesisUtterance(text);
utterance.lang = 'en-US';
utterance.pitch = 1;
utterance.rate = 1;
window.speechSynthesis.speak(utterance);
}
// Auto speak the latest response
function autoSpeakLatest() {
const messages = document.querySelectorAll('.assistant-msg');
if (messages.length > 0) {
const latestMessage = messages[messages.length - 1];
const messageId = latestMessage.querySelector('span[id^="msg-"]').id;
speakText(document.getElementById(messageId).textContent);
}
}
// Initialize after the page loads
document.addEventListener('DOMContentLoaded', function() {
setupSpeechRecognition();
// Start listening automatically
setTimeout(startRecognition, 1000);
});
// Handle speech input submission
document.getElementById('submit-speech').addEventListener('click', function() {
const speechResult = document.getElementById('speech-result').value;
if (speechResult) {
// Update the Streamlit text input with the speech result
const textInputs = document.querySelectorAll('input[type="text"]');
if (textInputs.length > 0) {
const lastInput = textInputs[0];
lastInput.value = speechResult;
lastInput.dispatchEvent(new Event('input', { bubbles: true }));
// Find and click the submit button
setTimeout(() => {
const buttons = document.querySelectorAll('button[kind="primaryForm"]');
for (const button of buttons) {
if (button.textContent.includes('Submit')) {
button.click();
break;
}
}
}, 100);
}
}
});
// Auto-speak for newest message if enabled
function checkForNewMessages() {
const autoSpeakEnabled = document.querySelector('input[type="checkbox"][aria-label="Auto-speak responses"]').checked;
if (autoSpeakEnabled) {
const messages = document.querySelectorAll('.assistant-msg');
if (messages.length > 0) {
const latestMessage = messages[messages.length - 1];
const messageId = latestMessage.querySelector('span[id^="msg-"]').id;
// Only speak if this is a new message
if (!latestMessage.hasAttribute('data-spoken')) {
speakText(document.getElementById(messageId).textContent);
latestMessage.setAttribute('data-spoken', 'true');
}
}
}
}
// Check for new messages every second
setInterval(checkForNewMessages, 1000);
</script>
""", unsafe_allow_html=True)
# Add voice status indicator
st.markdown("""
<div class="status-bar">
<span id="voice-status">Initializing voice recognition...</span>
<span id="voice-indicator" class="voice-indicator" onclick="toggleVoiceRecognition()"></span>
</div>
""", unsafe_allow_html=True)
# Regular text input
user_input = st.chat_input("Type your message here or just speak...")
# Hidden input for speech results
speech_result = st.text_input("Speech Result", key="speech_input", label_visibility="collapsed")
# Hidden button to submit speech
st.markdown('<button id="submit-speech" style="display:none;">Submit Speech</button>', unsafe_allow_html=True)
# Auto-speak toggle
st.checkbox("Auto-speak responses", value=st.session_state.auto_speak, key="auto_speak_toggle",
on_change=lambda: setattr(st.session_state, "auto_speak", st.session_state.auto_speak_toggle))
# Display chat history
for i, msg in enumerate(st.session_state.chat_history):
if msg["role"] == "user":
st.markdown(f'<div class="container"><div class="user-msg">You: {msg["content"]}</div></div>', unsafe_allow_html=True)
else:
msg_id = f"msg-{i}"
st.markdown(f'<div class="container"><div class="assistant-msg">HAL: <span id="{msg_id}">{msg["content"]}</span> <button class="speak-button" onclick="speakText(document.getElementById(\'{msg_id}\').textContent)">π</button></div></div>', unsafe_allow_html=True)
# Process user input
if user_input or speech_result:
# Prioritize speech result if available
query = speech_result if speech_result else user_input
# Get NASA data if applicable
nasa_data = get_nasa_data(query)
# Generate response
system_message = "You are HAL, an AI assistant specialized in NASA and space knowledge. Provide concise, factual responses."
response, st.session_state.chat_history = get_response(system_message, st.session_state.chat_history, query)
# Display NASA image if available
if nasa_data:
st.image(nasa_data["url"], caption=f"{nasa_data['title']} - {nasa_data['date']}")
st.write(nasa_data["explanation"])
# Force a rerun to update the chat display
st.rerun()
# Add JavaScript to ensure the page scrolls to the bottom on new messages
st.markdown("""
<script>
// Scroll to bottom of page on load
window.onload = function() {
window.scrollTo(0, document.body.scrollHeight);
}
</script>
""", unsafe_allow_html=True) |