Spaces:
Sleeping
Sleeping
import os | |
import re | |
import requests | |
import torch | |
import streamlit as st | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from transformers import pipeline | |
from langdetect import detect # Ensure this package is installed | |
# β Check for GPU or Default to CPU | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"β Using device: {device}") # Debugging info | |
# β Environment Variables | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.") | |
NASA_API_KEY = os.getenv("NASA_API_KEY") | |
if NASA_API_KEY is None: | |
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.") | |
# β Set Up Streamlit | |
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π") | |
# β Initialize Session State Variables (Ensuring Chat History Persists) | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}] | |
# β Initialize Hugging Face Model (Explicitly Set to CPU/GPU) | |
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.3): | |
return HuggingFaceEndpoint( | |
repo_id=model_id, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, # π₯ Lowered temperature for more factual and structured responses | |
token=HF_TOKEN, | |
task="text-generation", | |
device=-1 if device == "cpu" else 0 # β Force CPU (-1) or GPU (0) | |
) | |
# β Ensure English Responses | |
def ensure_english(text): | |
try: | |
detected_lang = detect(text) | |
if detected_lang != "en": | |
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?" | |
except: | |
return "β οΈ Language detection failed. Please ask your question again." | |
return text | |
# β Main Response Function (Fixing Repetition & Context) | |
def get_response(system_message, chat_history, user_text, max_new_tokens=800): | |
# β Ensure conversation history is included correctly | |
filtered_history = "\n".join( | |
f"{msg['role'].capitalize()}: {msg['content']}" | |
for msg in chat_history[-5:] # β Only keep the last 5 exchanges to prevent overflow | |
) | |
prompt = PromptTemplate.from_template( | |
"[INST] You are a highly knowledgeable AI assistant. Answer concisely, avoid repetition, and structure responses well." | |
"\n\nCONTEXT:\n{chat_history}\n" | |
"\nLATEST USER INPUT:\nUser: {user_text}\n" | |
"\n[END CONTEXT]\n" | |
"Assistant:" | |
) | |
# β Invoke Hugging Face Model | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.3) # π₯ Lowered temperature | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history)) | |
# Clean up the response - remove any "HAL:" prefix if present | |
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip() | |
response = ensure_english(response) | |
if not response: | |
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?" | |
# β Update conversation history | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
# β Keep only last 10 exchanges to prevent unnecessary repetition | |
return response, chat_history[-10:] | |
# β Streamlit UI | |
st.title("π HAL - NASA AI Assistant") | |
# β Justify all chatbot responses | |
st.markdown(""" | |
<style> | |
.user-msg, .assistant-msg { | |
padding: 11px; | |
border-radius: 10px; | |
margin-bottom: 5px; | |
width: fit-content; | |
max-width: 80%; | |
text-align: justify; | |
} | |
.user-msg { background-color: #696969; color: white; } | |
.assistant-msg { background-color: #333333; color: white; } | |
.container { display: flex; flex-direction: column; align-items: flex-start; } | |
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } } | |
</style> | |
""", unsafe_allow_html=True) | |
# β Chat UI | |
user_input = st.chat_input("Type your message here...") | |
if user_input: | |
# Get response and update chat history | |
response, st.session_state.chat_history = get_response( | |
system_message="You are a helpful AI assistant.", | |
user_text=user_input, | |
chat_history=st.session_state.chat_history | |
) | |
# β Display chat history (ONLY display from history, not separately) | |
st.markdown("<div class='container'>", unsafe_allow_html=True) | |
for message in st.session_state.chat_history: | |
if message["role"] == "user": | |
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
else: | |
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True) | |
st.markdown("</div>", unsafe_allow_html=True) |