NeoWS-Monitor / app.py
CCockrum's picture
Update app.py
d207c48 verified
raw
history blame
10 kB
import streamlit as st
import os
import requests
import pandas as pd
import plotly.express as px
from datetime import datetime, timedelta
# App title and description
st.title("🌠 NASA Near-Earth Objects Tracker")
st.markdown("""
This application uses NASA's NeoWs (Near Earth Object Web Service) API to retrieve and visualize
information about asteroids and other near-Earth objects.
""")
# API Configuration
NASA_API_URL = "https://api.nasa.gov/neo/rest/v1/feed"
import os # Ensure this is at the top
API_KEY = os.getenv("NASA_API_KEY")
if not API_KEY:
st.error("🚨 NASA_API_KEY environment variable is not set.")
st.stop()
# Date selection
st.sidebar.header("Search Parameters")
today = datetime.now()
default_start_date = today.date()
default_end_date = (today + timedelta(days=7)).date()
start_date = st.sidebar.date_input("Start Date", default_start_date)
end_date = st.sidebar.date_input("End Date", default_end_date)
# Validate date range
date_diff = (end_date - start_date).days
if date_diff > 7:
st.warning("⚠️ NASA API limits date range to 7 days or less. Adjusting to a 7-day period.")
end_date = start_date + timedelta(days=7)
# Function to fetch data from NASA API
def fetch_asteroid_data(start_date, end_date, api_key):
params = {
"start_date": start_date.strftime("%Y-%m-%d"),
"end_date": end_date.strftime("%Y-%m-%d"),
"api_key": api_key
}
with st.spinner("Fetching asteroid data from NASA..."):
try:
response = requests.get(NASA_API_URL, params=params)
response.raise_for_status() # Raise an exception for HTTP errors
return response.json()
except requests.exceptions.RequestException as e:
st.error(f"Error accessing NASA API: {e}")
return None
# Search button
if st.sidebar.button("Search Asteroids"):
# Fetch data
data = fetch_asteroid_data(start_date, end_date, API_KEY)
if data:
# Store data in session state
st.session_state.asteroid_data = data
st.session_state.searched = True
else:
st.error("Failed to fetch asteroid data. Please check your API key and try again.")
# Display results if search was performed
if 'searched' in st.session_state and st.session_state.searched:
data = st.session_state.asteroid_data
# Extract asteroid count
element_count = data.get('element_count', 0)
st.success(f"Found {element_count} near-Earth objects between {start_date} and {end_date}")
# Process and organize data
neo_data = data.get('near_earth_objects', {})
all_asteroids = []
for date, asteroids in neo_data.items():
for asteroid in asteroids:
asteroid_info = {
'id': asteroid['id'],
'name': asteroid['name'],
'date': date,
'diameter_min_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_min'],
'diameter_max_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_max'],
'is_hazardous': asteroid['is_potentially_hazardous_asteroid'],
'close_approach_date': asteroid['close_approach_data'][0]['close_approach_date'],
'miss_distance_km': float(asteroid['close_approach_data'][0]['miss_distance']['kilometers']),
'relative_velocity_kph': float(asteroid['close_approach_data'][0]['relative_velocity']['kilometers_per_hour'])
}
all_asteroids.append(asteroid_info)
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(all_asteroids)
# Add average diameter column
df['avg_diameter_km'] = (df['diameter_min_km'] + df['diameter_max_km']) / 2
# Display summary statistics
st.header("Summary Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Asteroids", len(df))
with col2:
hazardous_count = df['is_hazardous'].sum()
st.metric("Potentially Hazardous", f"{hazardous_count} ({hazardous_count/len(df)*100:.1f}%)")
with col3:
st.metric("Avg. Size", f"{df['avg_diameter_km'].mean():.2f} km")
# Visualizations
st.header("Visualizations")
viz_tab1, viz_tab2 = st.tabs(["Size Distribution", "Miss Distance"])
with viz_tab1:
# Size distribution chart
fig1 = px.histogram(
df,
x="avg_diameter_km",
color="is_hazardous",
title="Size Distribution of Near-Earth Objects",
labels={"avg_diameter_km": "Average Diameter (km)", "is_hazardous": "Potentially Hazardous"},
color_discrete_map={True: "red", False: "green"}
)
st.plotly_chart(fig1, use_container_width=True)
with viz_tab2:
# Miss distance scatter plot
fig2 = px.scatter(
df,
x="miss_distance_km",
y="avg_diameter_km",
color="is_hazardous",
size="relative_velocity_kph",
hover_name="name",
title="Miss Distance vs. Size (with velocity)",
labels={
"miss_distance_km": "Miss Distance (km)",
"avg_diameter_km": "Average Diameter (km)",
"is_hazardous": "Potentially Hazardous",
"relative_velocity_kph": "Velocity (km/h)"
},
color_discrete_map={True: "red", False: "green"}
)
fig2.update_layout(xaxis_type="log")
st.plotly_chart(fig2, use_container_width=True)
# Detailed asteroid data
st.header("Detailed Asteroid Data")
# Filter options
st.subheader("Filters")
col1, col2 = st.columns(2)
with col1:
show_hazardous = st.checkbox("Show only hazardous asteroids", False)
with col2:
size_threshold = st.slider("Minimum size (km)", 0.0, max(df['avg_diameter_km']), 0.0, 0.01)
# Apply filters
filtered_df = df.copy()
if show_hazardous:
filtered_df = filtered_df[filtered_df['is_hazardous'] == True]
filtered_df = filtered_df[filtered_df['avg_diameter_km'] >= size_threshold]
# Sort options
sort_by = st.selectbox(
"Sort by",
["close_approach_date", "name", "avg_diameter_km", "miss_distance_km", "relative_velocity_kph"]
)
sort_order = st.radio("Sort order", ["Ascending", "Descending"], horizontal=True)
# Apply sorting
ascending = sort_order == "Ascending"
filtered_df = filtered_df.sort_values(by=sort_by, ascending=ascending)
# Display dataframe with key information
display_df = filtered_df[[
'name', 'close_approach_date', 'avg_diameter_km',
'miss_distance_km', 'relative_velocity_kph', 'is_hazardous'
]].rename(columns={
'name': 'Name',
'close_approach_date': 'Approach Date',
'avg_diameter_km': 'Diameter (km)',
'miss_distance_km': 'Miss Distance (km)',
'relative_velocity_kph': 'Velocity (km/h)',
'is_hazardous': 'Hazardous'
})
st.dataframe(display_df, use_container_width=True)
# Asteroid details expander
st.subheader("Individual Asteroid Details")
# Allow user to select an asteroid for detailed view
selected_asteroid = st.selectbox("Select an asteroid", filtered_df['name'].tolist())
if selected_asteroid:
asteroid_details = filtered_df[filtered_df['name'] == selected_asteroid].iloc[0]
st.subheader(f"πŸŒ‘ {selected_asteroid}")
col1, col2 = st.columns(2)
with col1:
st.write("**ID:**", asteroid_details['id'])
st.write("**Approach Date:**", asteroid_details['close_approach_date'])
st.write("**Hazardous:**", "Yes ⚠️" if asteroid_details['is_hazardous'] else "No βœ“")
with col2:
st.write("**Diameter Range:**", f"{asteroid_details['diameter_min_km']:.3f} - {asteroid_details['diameter_max_km']:.3f} km")
st.write("**Miss Distance:**", f"{asteroid_details['miss_distance_km']:,.0f} km")
st.write("**Relative Velocity:**", f"{asteroid_details['relative_velocity_kph']:,.0f} km/h")
# Create a gauge-like visualization for the hazard level
hazard_level = 0
if asteroid_details['is_hazardous']:
# Calculate hazard level based on size and miss distance
size_factor = min(asteroid_details['avg_diameter_km'] / 0.5, 1) # Normalize by 0.5km
distance_factor = min(1000000 / asteroid_details['miss_distance_km'], 1) # Normalize by 1M km
hazard_level = (size_factor * 0.7 + distance_factor * 0.3) * 100
st.progress(int(hazard_level), text=f"Relative Hazard Level: {hazard_level:.1f}%")
# Add some context about the asteroid
st.write("### Context")
if hazard_level > 70:
st.warning("This asteroid is classified as potentially hazardous and is relatively large and close.")
elif hazard_level > 40:
st.info("This asteroid is classified as potentially hazardous but poses minimal risk at this time.")
else:
st.success("This asteroid is not considered hazardous and poses no risk to Earth.")
# Add information about the NASA API
st.sidebar.markdown("---")
st.sidebar.markdown("""
### About NASA NeoWs API
The [Near Earth Object Web Service](https://api.nasa.gov) is a RESTful web service for near earth asteroid information.
This API provides data on asteroids based on their closest approach date to Earth.
To get your own API key, visit [api.nasa.gov](https://api.nasa.gov).
""")
# Add deployment instructions
st.sidebar.markdown("---")
st.sidebar.markdown("""
### Deployment Instructions
1. Save this code as `app.py`
2. Create `requirements.txt` with:
```
streamlit
requests
pandas
plotly
```
3. Upload to Hugging Face Spaces
""")