NeoWS-Monitor / app.py
CCockrum's picture
Update app.py
dd3973b verified
raw
history blame
8.11 kB
# app.py
import os
from datetime import datetime, timedelta
import pandas as pd
import plotly.express as px
import streamlit as st
from fetch import fetch_asteroid_data
# App title and description
st.title("\U0001F320 NASA Near-Earth Objects Tracker")
st.markdown("""
This application uses NASA's NeoWs (Near Earth Object Web Service) API to retrieve and visualize
information about asteroids and other near-Earth objects.
""")
# Date selection
st.sidebar.header("Search Parameters")
today = datetime.now()
default_start_date = today.date()
default_end_date = (today + timedelta(days=7)).date()
start_date = st.sidebar.date_input("Start Date", default_start_date)
end_date = st.sidebar.date_input("End Date", default_end_date)
# Validate date range
date_diff = (end_date - start_date).days
if date_diff > 7:
st.warning("\u26a0\ufe0f NASA API limits date range to 7 days or less. Adjusting to a 7-day period.")
end_date = start_date + timedelta(days=7)
# Search button
if st.sidebar.button("Search Asteroids"):
data = fetch_asteroid_data(start_date, end_date)
if data:
st.session_state.asteroid_data = data
st.session_state.searched = True
else:
st.error("Failed to fetch asteroid data. Please check your environment setup.")
# Display results if search was performed
if 'searched' in st.session_state and st.session_state.searched:
data = st.session_state.asteroid_data
element_count = data.get('element_count', 0)
st.success(f"Found {element_count} near-Earth objects between {start_date} and {end_date}")
neo_data = data.get('near_earth_objects', {})
all_asteroids = []
for date, asteroids in neo_data.items():
for asteroid in asteroids:
if not asteroid['close_approach_data']:
continue
asteroid_info = {
'id': asteroid['id'],
'name': asteroid['name'],
'date': date,
'diameter_min_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_min'],
'diameter_max_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_max'],
'is_hazardous': asteroid['is_potentially_hazardous_asteroid'],
'close_approach_date': asteroid['close_approach_data'][0]['close_approach_date'],
'miss_distance_km': float(asteroid['close_approach_data'][0]['miss_distance']['kilometers']),
'relative_velocity_kph': float(asteroid['close_approach_data'][0]['relative_velocity']['kilometers_per_hour'])
}
all_asteroids.append(asteroid_info)
df = pd.DataFrame(all_asteroids)
df['avg_diameter_km'] = (df['diameter_min_km'] + df['diameter_max_km']) / 2
st.header("Summary Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Asteroids", len(df))
with col2:
hazardous_count = df['is_hazardous'].sum()
st.metric("Potentially Hazardous", f"{hazardous_count} ({hazardous_count/len(df)*100:.1f}%)")
with col3:
st.metric("Avg. Size", f"{df['avg_diameter_km'].mean():.2f} km")
st.header("Visualizations")
viz_tab1, viz_tab2 = st.tabs(["Size Distribution", "Miss Distance"])
with viz_tab1:
fig1 = px.histogram(
df, x="avg_diameter_km", color="is_hazardous",
title="Size Distribution of Near-Earth Objects",
labels={"avg_diameter_km": "Average Diameter (km)", "is_hazardous": "Potentially Hazardous"},
color_discrete_map={True: "red", False: "green"}
)
st.plotly_chart(fig1, use_container_width=True)
with viz_tab2:
fig2 = px.scatter(
df, x="miss_distance_km", y="avg_diameter_km", color="is_hazardous",
size="relative_velocity_kph", hover_name="name",
title="Miss Distance vs. Size (with velocity)",
labels={
"miss_distance_km": "Miss Distance (km)",
"avg_diameter_km": "Average Diameter (km)",
"is_hazardous": "Potentially Hazardous",
"relative_velocity_kph": "Velocity (km/h)"
},
color_discrete_map={True: "red", False: "green"}
)
fig2.update_layout(xaxis_type="log")
st.plotly_chart(fig2, use_container_width=True)
st.header("Detailed Asteroid Data")
st.subheader("Filters")
col1, col2 = st.columns(2)
with col1:
show_hazardous = st.checkbox("Show only hazardous asteroids", False)
with col2:
size_threshold = st.slider("Minimum size (km)", 0.0, max(df['avg_diameter_km']), 0.0, 0.01)
filtered_df = df.copy()
if show_hazardous:
filtered_df = filtered_df[filtered_df['is_hazardous'] == True]
filtered_df = filtered_df[filtered_df['avg_diameter_km'] >= size_threshold]
sort_by = st.selectbox("Sort by", [
"close_approach_date", "name", "avg_diameter_km", "miss_distance_km", "relative_velocity_kph"])
sort_order = st.radio("Sort order", ["Ascending", "Descending"], horizontal=True)
ascending = sort_order == "Ascending"
filtered_df = filtered_df.sort_values(by=sort_by, ascending=ascending)
display_df = filtered_df[[
'name', 'close_approach_date', 'avg_diameter_km',
'miss_distance_km', 'relative_velocity_kph', 'is_hazardous'
]].rename(columns={
'name': 'Name',
'close_approach_date': 'Approach Date',
'avg_diameter_km': 'Diameter (km)',
'miss_distance_km': 'Miss Distance (km)',
'relative_velocity_kph': 'Velocity (km/h)',
'is_hazardous': 'Hazardous'
})
st.dataframe(display_df, use_container_width=True)
st.subheader("Individual Asteroid Details")
selected_asteroid = st.selectbox("Select an asteroid", filtered_df['name'].tolist())
if selected_asteroid:
asteroid_details = filtered_df[filtered_df['name'] == selected_asteroid].iloc[0]
st.subheader(f"\U0001F311 {selected_asteroid}")
col1, col2 = st.columns(2)
with col1:
st.write("**ID:**", asteroid_details['id'])
st.write("**Approach Date:**", asteroid_details['close_approach_date'])
st.write("**Hazardous:**", "Yes \u26a0\ufe0f" if asteroid_details['is_hazardous'] else "No \u2713")
with col2:
st.write("**Diameter Range:**", f"{asteroid_details['diameter_min_km']:.3f} - {asteroid_details['diameter_max_km']:.3f} km")
st.write("**Miss Distance:**", f"{asteroid_details['miss_distance_km']:,.0f} km")
st.write("**Relative Velocity:**", f"{asteroid_details['relative_velocity_kph']:,.0f} km/h")
hazard_level = 0
if asteroid_details['is_hazardous']:
size_factor = min(asteroid_details['avg_diameter_km'] / 0.5, 1)
distance_factor = min(1000000 / asteroid_details['miss_distance_km'], 1)
hazard_level = (size_factor * 0.7 + distance_factor * 0.3) * 100
st.progress(int(hazard_level), text=f"Relative Hazard Level: {hazard_level:.1f}%")
st.write("### Context")
if hazard_level > 70:
st.warning("This asteroid is classified as potentially hazardous and is relatively large and close.")
elif hazard_level > 40:
st.info("This asteroid is classified as potentially hazardous but poses minimal risk at this time.")
else:
st.success("This asteroid is not considered hazardous and poses no risk to Earth.")
# Sidebar info
st.sidebar.markdown("---")
st.sidebar.markdown("""
### About NASA NeoWs API
The [Near Earth Object Web Service](https://api.nasa.gov) provides asteroid data based on closest approach to Earth.
To get an API key, visit [api.nasa.gov](https://api.nasa.gov).
""")
st.sidebar.markdown("---")
st.sidebar.markdown("""
### Deployment Instructions
1. Save this code as `app.py`
2. Create `requirements.txt` with:
```
streamlit
requests
pandas
plotly
python-dotenv
```
3. Add `.env` file with:
```
NASA_API_KEY=your_key_here
```
4. Deploy to Streamlit Cloud or similar
""")