CCockrum commited on
Commit
3f6deab
·
verified ·
1 Parent(s): 6bc6511

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +259 -0
app.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import requests
3
+ import pandas as pd
4
+ import plotly.express as px
5
+ from datetime import datetime, timedelta
6
+
7
+ # App title and description
8
+ st.title("🌠 NASA Near-Earth Objects Tracker")
9
+ st.markdown("""
10
+ This application uses NASA's NeoWs (Near Earth Object Web Service) API to retrieve and visualize
11
+ information about asteroids and other near-Earth objects.
12
+ """)
13
+
14
+ # API Configuration
15
+ NASA_API_URL = "https://api.nasa.gov/neo/rest/v1/feed"
16
+ API_KEY = st.sidebar.text_input("NASA API Key", value="NASA_API_KEY", type="password")
17
+
18
+ # Date selection
19
+ st.sidebar.header("Search Parameters")
20
+ today = datetime.now()
21
+ default_start_date = today.date()
22
+ default_end_date = (today + timedelta(days=7)).date()
23
+
24
+ start_date = st.sidebar.date_input("Start Date", default_start_date)
25
+ end_date = st.sidebar.date_input("End Date", default_end_date)
26
+
27
+ # Validate date range
28
+ date_diff = (end_date - start_date).days
29
+ if date_diff > 7:
30
+ st.warning("⚠️ NASA API limits date range to 7 days or less. Adjusting to a 7-day period.")
31
+ end_date = start_date + timedelta(days=7)
32
+
33
+ # Function to fetch data from NASA API
34
+ def fetch_asteroid_data(start_date, end_date, api_key):
35
+ params = {
36
+ "start_date": start_date.strftime("%Y-%m-%d"),
37
+ "end_date": end_date.strftime("%Y-%m-%d"),
38
+ "api_key": api_key
39
+ }
40
+
41
+ with st.spinner("Fetching asteroid data from NASA..."):
42
+ try:
43
+ response = requests.get(NASA_API_URL, params=params)
44
+ response.raise_for_status() # Raise an exception for HTTP errors
45
+ return response.json()
46
+ except requests.exceptions.RequestException as e:
47
+ st.error(f"Error accessing NASA API: {e}")
48
+ return None
49
+
50
+ # Search button
51
+ if st.sidebar.button("Search Asteroids"):
52
+ # Fetch data
53
+ data = fetch_asteroid_data(start_date, end_date, API_KEY)
54
+
55
+ if data:
56
+ # Store data in session state
57
+ st.session_state.asteroid_data = data
58
+ st.session_state.searched = True
59
+ else:
60
+ st.error("Failed to fetch asteroid data. Please check your API key and try again.")
61
+
62
+ # Display results if search was performed
63
+ if 'searched' in st.session_state and st.session_state.searched:
64
+ data = st.session_state.asteroid_data
65
+
66
+ # Extract asteroid count
67
+ element_count = data.get('element_count', 0)
68
+ st.success(f"Found {element_count} near-Earth objects between {start_date} and {end_date}")
69
+
70
+ # Process and organize data
71
+ neo_data = data.get('near_earth_objects', {})
72
+
73
+ all_asteroids = []
74
+ for date, asteroids in neo_data.items():
75
+ for asteroid in asteroids:
76
+ asteroid_info = {
77
+ 'id': asteroid['id'],
78
+ 'name': asteroid['name'],
79
+ 'date': date,
80
+ 'diameter_min_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_min'],
81
+ 'diameter_max_km': asteroid['estimated_diameter']['kilometers']['estimated_diameter_max'],
82
+ 'is_hazardous': asteroid['is_potentially_hazardous_asteroid'],
83
+ 'close_approach_date': asteroid['close_approach_data'][0]['close_approach_date'],
84
+ 'miss_distance_km': float(asteroid['close_approach_data'][0]['miss_distance']['kilometers']),
85
+ 'relative_velocity_kph': float(asteroid['close_approach_data'][0]['relative_velocity']['kilometers_per_hour'])
86
+ }
87
+ all_asteroids.append(asteroid_info)
88
+
89
+ # Convert to DataFrame for easier manipulation
90
+ df = pd.DataFrame(all_asteroids)
91
+
92
+ # Add average diameter column
93
+ df['avg_diameter_km'] = (df['diameter_min_km'] + df['diameter_max_km']) / 2
94
+
95
+ # Display summary statistics
96
+ st.header("Summary Statistics")
97
+ col1, col2, col3 = st.columns(3)
98
+
99
+ with col1:
100
+ st.metric("Total Asteroids", len(df))
101
+
102
+ with col2:
103
+ hazardous_count = df['is_hazardous'].sum()
104
+ st.metric("Potentially Hazardous", f"{hazardous_count} ({hazardous_count/len(df)*100:.1f}%)")
105
+
106
+ with col3:
107
+ st.metric("Avg. Size", f"{df['avg_diameter_km'].mean():.2f} km")
108
+
109
+ # Visualizations
110
+ st.header("Visualizations")
111
+
112
+ viz_tab1, viz_tab2 = st.tabs(["Size Distribution", "Miss Distance"])
113
+
114
+ with viz_tab1:
115
+ # Size distribution chart
116
+ fig1 = px.histogram(
117
+ df,
118
+ x="avg_diameter_km",
119
+ color="is_hazardous",
120
+ title="Size Distribution of Near-Earth Objects",
121
+ labels={"avg_diameter_km": "Average Diameter (km)", "is_hazardous": "Potentially Hazardous"},
122
+ color_discrete_map={True: "red", False: "green"}
123
+ )
124
+ st.plotly_chart(fig1, use_container_width=True)
125
+
126
+ with viz_tab2:
127
+ # Miss distance scatter plot
128
+ fig2 = px.scatter(
129
+ df,
130
+ x="miss_distance_km",
131
+ y="avg_diameter_km",
132
+ color="is_hazardous",
133
+ size="relative_velocity_kph",
134
+ hover_name="name",
135
+ title="Miss Distance vs. Size (with velocity)",
136
+ labels={
137
+ "miss_distance_km": "Miss Distance (km)",
138
+ "avg_diameter_km": "Average Diameter (km)",
139
+ "is_hazardous": "Potentially Hazardous",
140
+ "relative_velocity_kph": "Velocity (km/h)"
141
+ },
142
+ color_discrete_map={True: "red", False: "green"}
143
+ )
144
+ fig2.update_layout(xaxis_type="log")
145
+ st.plotly_chart(fig2, use_container_width=True)
146
+
147
+ # Detailed asteroid data
148
+ st.header("Detailed Asteroid Data")
149
+
150
+ # Filter options
151
+ st.subheader("Filters")
152
+ col1, col2 = st.columns(2)
153
+
154
+ with col1:
155
+ show_hazardous = st.checkbox("Show only hazardous asteroids", False)
156
+
157
+ with col2:
158
+ size_threshold = st.slider("Minimum size (km)", 0.0, max(df['avg_diameter_km']), 0.0, 0.01)
159
+
160
+ # Apply filters
161
+ filtered_df = df.copy()
162
+ if show_hazardous:
163
+ filtered_df = filtered_df[filtered_df['is_hazardous'] == True]
164
+
165
+ filtered_df = filtered_df[filtered_df['avg_diameter_km'] >= size_threshold]
166
+
167
+ # Sort options
168
+ sort_by = st.selectbox(
169
+ "Sort by",
170
+ ["close_approach_date", "name", "avg_diameter_km", "miss_distance_km", "relative_velocity_kph"]
171
+ )
172
+
173
+ sort_order = st.radio("Sort order", ["Ascending", "Descending"], horizontal=True)
174
+
175
+ # Apply sorting
176
+ ascending = sort_order == "Ascending"
177
+ filtered_df = filtered_df.sort_values(by=sort_by, ascending=ascending)
178
+
179
+ # Display dataframe with key information
180
+ display_df = filtered_df[[
181
+ 'name', 'close_approach_date', 'avg_diameter_km',
182
+ 'miss_distance_km', 'relative_velocity_kph', 'is_hazardous'
183
+ ]].rename(columns={
184
+ 'name': 'Name',
185
+ 'close_approach_date': 'Approach Date',
186
+ 'avg_diameter_km': 'Diameter (km)',
187
+ 'miss_distance_km': 'Miss Distance (km)',
188
+ 'relative_velocity_kph': 'Velocity (km/h)',
189
+ 'is_hazardous': 'Hazardous'
190
+ })
191
+
192
+ st.dataframe(display_df, use_container_width=True)
193
+
194
+ # Asteroid details expander
195
+ st.subheader("Individual Asteroid Details")
196
+
197
+ # Allow user to select an asteroid for detailed view
198
+ selected_asteroid = st.selectbox("Select an asteroid", filtered_df['name'].tolist())
199
+
200
+ if selected_asteroid:
201
+ asteroid_details = filtered_df[filtered_df['name'] == selected_asteroid].iloc[0]
202
+
203
+ st.subheader(f"🌑 {selected_asteroid}")
204
+
205
+ col1, col2 = st.columns(2)
206
+
207
+ with col1:
208
+ st.write("**ID:**", asteroid_details['id'])
209
+ st.write("**Approach Date:**", asteroid_details['close_approach_date'])
210
+ st.write("**Hazardous:**", "Yes ⚠️" if asteroid_details['is_hazardous'] else "No ✓")
211
+
212
+ with col2:
213
+ st.write("**Diameter Range:**", f"{asteroid_details['diameter_min_km']:.3f} - {asteroid_details['diameter_max_km']:.3f} km")
214
+ st.write("**Miss Distance:**", f"{asteroid_details['miss_distance_km']:,.0f} km")
215
+ st.write("**Relative Velocity:**", f"{asteroid_details['relative_velocity_kph']:,.0f} km/h")
216
+
217
+ # Create a gauge-like visualization for the hazard level
218
+ hazard_level = 0
219
+ if asteroid_details['is_hazardous']:
220
+ # Calculate hazard level based on size and miss distance
221
+ size_factor = min(asteroid_details['avg_diameter_km'] / 0.5, 1) # Normalize by 0.5km
222
+ distance_factor = min(1000000 / asteroid_details['miss_distance_km'], 1) # Normalize by 1M km
223
+ hazard_level = (size_factor * 0.7 + distance_factor * 0.3) * 100
224
+
225
+ st.progress(int(hazard_level), text=f"Relative Hazard Level: {hazard_level:.1f}%")
226
+
227
+ # Add some context about the asteroid
228
+ st.write("### Context")
229
+ if hazard_level > 70:
230
+ st.warning("This asteroid is classified as potentially hazardous and is relatively large and close.")
231
+ elif hazard_level > 40:
232
+ st.info("This asteroid is classified as potentially hazardous but poses minimal risk at this time.")
233
+ else:
234
+ st.success("This asteroid is not considered hazardous and poses no risk to Earth.")
235
+
236
+ # Add information about the NASA API
237
+ st.sidebar.markdown("---")
238
+ st.sidebar.markdown("""
239
+ ### About NASA NeoWs API
240
+ The [Near Earth Object Web Service](https://api.nasa.gov) is a RESTful web service for near earth asteroid information.
241
+ This API provides data on asteroids based on their closest approach date to Earth.
242
+
243
+ To get your own API key, visit [api.nasa.gov](https://api.nasa.gov).
244
+ """)
245
+
246
+ # Add deployment instructions
247
+ st.sidebar.markdown("---")
248
+ st.sidebar.markdown("""
249
+ ### Deployment Instructions
250
+ 1. Save this code as `app.py`
251
+ 2. Create `requirements.txt` with:
252
+ ```
253
+ streamlit
254
+ requests
255
+ pandas
256
+ plotly
257
+ ```
258
+ 3. Upload to Hugging Face Spaces
259
+ """)