Ocean-Monitor / app.py
CCockrum's picture
Update app.py
0004184 verified
import gradio as gr
import pandas as pd
import numpy as np
import tempfile
import plotly.graph_objects as go
import plotly.express as px
from urllib.parse import urlencode
from plotly.subplots import make_subplots
import requests
from datetime import datetime, timedelta
import warnings
import json
warnings.filterwarnings('ignore')
class EnhancedOceanClimateAgent:
def __init__(self):
self.anomaly_threshold = 2.0
self.critical_temp_change = 1.5
# Fixed NOAA API base URL
self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter"
self.noaa_stations_url = "https://api.tidesandcurrents.noaa.gov/mdapi/prod/webapi/stations.json"
# Popular NOAA stations for different regions
self.default_stations = {
"San Francisco, CA": "9414290",
"New York, NY": "8518750",
"Miami, FL": "8723214",
"Seattle, WA": "9447130",
"Boston, MA": "8443970",
"Los Angeles, CA": "9410660",
"Galveston, TX": "8771450",
"Charleston, SC": "8665530"
}
def get_noaa_data(self, station_id, product, begin_date, end_date, units="metric"):
"""Fetch NOAA data for a given product and date range"""
# Format dates for NOAA API
begin_str = begin_date.strftime("%Y%m%d %H:%M")
end_str = end_date.strftime("%Y%m%d %H:%M")
params = {
'station': station_id,
'product': product,
'begin_date': begin_str,
'end_date': end_str,
'datum': 'MLLW', # Mean Lower Low Water
'application': 'OceanClimateAgent',
'time_zone': 'gmt',
'units': units,
'format': 'json'
}
try:
print(f"Fetching {product} data for station {station_id}")
print(f"Date range: {begin_str} to {end_str}")
response = requests.get(self.noaa_base_url, params=params, timeout=30)
if response.status_code != 200:
print(f"HTTP Error {response.status_code}: {response.text}")
return None
data = response.json()
if 'data' in data and data['data']:
print(f"Successfully fetched {len(data['data'])} records for {product}")
return pd.DataFrame(data['data'])
elif 'error' in data:
print(f"NOAA API error for {product}: {data['error']['message']}")
return None
else:
print(f"No data returned for {product}")
return None
except requests.exceptions.Timeout:
print(f"Timeout fetching {product} data")
return None
except requests.exceptions.RequestException as e:
print(f"Request failed for {product}: {str(e)}")
return None
except json.JSONDecodeError as e:
print(f"JSON decode error for {product}: {str(e)}")
return None
except Exception as e:
print(f"Unexpected error fetching {product}: {str(e)}")
return None
def get_comprehensive_station_data(self, station_name, days_back=30):
"""Get comprehensive data from a NOAA station"""
station_id = self.default_stations.get(station_name)
if not station_id:
return None, "Station not found"
# Ensure end_date is not in the future and allow for some buffer
end_date = datetime.utcnow() - timedelta(hours=2) # 2 hour buffer
start_date = end_date - timedelta(days=days_back)
print(f"Fetching data for {station_name} (ID: {station_id})")
print(f"Date range: {start_date} to {end_date}")
# Priority order - start with most reliable products
products_to_fetch = [
('water_level', 'water_level'),
('water_temperature', 'water_temperature'),
('air_temperature', 'air_temperature'),
('wind', 'wind'),
('air_pressure', 'air_pressure')
]
all_data = {}
success_count = 0
for product_name, product_code in products_to_fetch:
print(f"Attempting to fetch {product_name}...")
data = self.get_noaa_data(station_id, product_code, start_date, end_date)
if data is not None and not data.empty:
all_data[product_name] = data
success_count += 1
print(f"{product_name}: {len(data)} records")
else:
print(f"{product_name}: No data available")
if success_count == 0:
return None, f"No data available for station {station_name} in the specified time period. This could be due to: station maintenance, data processing delays, or the station may not support the requested data types."
print(f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types")
return all_data, f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types"
def process_noaa_data(self, raw_data):
"""Process and combine NOAA data for analysis"""
if not raw_data:
return None
base_df = None
# Start with water level data if available (most common)
if 'water_level' in raw_data:
df = raw_data['water_level'].copy()
df['datetime'] = pd.to_datetime(df['t'])
df['water_level'] = pd.to_numeric(df['v'], errors='coerce')
base_df = df[['datetime', 'water_level']].copy()
print(f"Base dataset: water_level with {len(base_df)} records")
# If no water level, try other datasets
if base_df is None:
for product_name in ['water_temperature', 'air_temperature', 'wind', 'air_pressure']:
if product_name in raw_data:
df = raw_data[product_name].copy()
df['datetime'] = pd.to_datetime(df['t'])
if product_name == 'wind':
df['wind_speed'] = pd.to_numeric(df['s'], errors='coerce')
base_df = df[['datetime', 'wind_speed']].copy()
else:
column_name = product_name.replace('_temperature', '_temp')
df[column_name] = pd.to_numeric(df['v'], errors='coerce')
base_df = df[['datetime', column_name]].copy()
print(f"Base dataset: {product_name} with {len(base_df)} records")
break
if base_df is None:
return None
# Add other parameters when available
if 'water_temperature' in raw_data and 'water_temp' not in base_df.columns:
temp_df = raw_data['water_temperature'].copy()
temp_df['datetime'] = pd.to_datetime(temp_df['t'])
temp_df['water_temp'] = pd.to_numeric(temp_df['v'], errors='coerce')
base_df = base_df.merge(temp_df[['datetime', 'water_temp']], on='datetime', how='outer')
if 'air_temperature' in raw_data and 'air_temp' not in base_df.columns:
air_temp_df = raw_data['air_temperature'].copy()
air_temp_df['datetime'] = pd.to_datetime(air_temp_df['t'])
air_temp_df['air_temp'] = pd.to_numeric(air_temp_df['v'], errors='coerce')
base_df = base_df.merge(air_temp_df[['datetime', 'air_temp']], on='datetime', how='outer')
if 'wind' in raw_data and 'wind_speed' not in base_df.columns:
wind_df = raw_data['wind'].copy()
wind_df['datetime'] = pd.to_datetime(wind_df['t'])
wind_df['wind_speed'] = pd.to_numeric(wind_df['s'], errors='coerce')
wind_df['wind_direction'] = pd.to_numeric(wind_df['d'], errors='coerce')
base_df = base_df.merge(wind_df[['datetime', 'wind_speed', 'wind_direction']], on='datetime', how='outer')
if 'air_pressure' in raw_data and 'air_pressure' not in base_df.columns:
pressure_df = raw_data['air_pressure'].copy()
pressure_df['datetime'] = pd.to_datetime(pressure_df['t'])
pressure_df['air_pressure'] = pd.to_numeric(pressure_df['v'], errors='coerce')
base_df = base_df.merge(pressure_df[['datetime', 'air_pressure']], on='datetime', how='outer')
# Sort by datetime and remove duplicates
base_df = base_df.sort_values('datetime').drop_duplicates(subset=['datetime'])
print(f"Final processed dataset: {len(base_df)} records with {len(base_df.columns)-1} parameters")
return base_df
def detect_anomalies(self, data, column, window=24): # 24 hours for hourly data
"""Detect anomalies using rolling statistics"""
if column not in data.columns or data[column].isna().all():
return pd.Series([False] * len(data)), pd.Series([0] * len(data))
rolling_mean = data[column].rolling(window=window, center=True, min_periods=1).mean()
rolling_std = data[column].rolling(window=window, center=True, min_periods=1).std()
# Avoid division by zero
rolling_std = rolling_std.fillna(1)
rolling_std = rolling_std.replace(0, 1)
z_scores = np.abs((data[column] - rolling_mean) / rolling_std)
anomalies = z_scores > self.anomaly_threshold
return anomalies, z_scores
def calculate_trends(self, data, column, hours=168): # 7 days
"""Calculate trend over specified period"""
if column not in data.columns or data[column].isna().all():
return 0
recent_data = data.tail(hours)
if len(recent_data) < 2:
return 0
x = np.arange(len(recent_data))
y = recent_data[column].dropna()
if len(y) < 2:
return 0
x = x[:len(y)]
slope = np.polyfit(x, y, 1)[0] if len(x) > 1 else 0
return slope
def generate_climate_analysis(self, data, station_name):
"""Generate comprehensive climate analysis"""
if data is None or data.empty:
return {}, []
analysis = {}
alerts = []
# Water level analysis
if 'water_level' in data.columns:
wl_trend = self.calculate_trends(data, 'water_level')
analysis['water_level_trend'] = wl_trend * 24 # per day
if abs(wl_trend * 24) > 5: # >5cm per day change
alerts.append(f"Significant water level change: {wl_trend*24:.1f}cm/day at {station_name}")
# Temperature analysis
for temp_col in ['water_temp', 'air_temp']:
if temp_col in data.columns:
temp_trend = self.calculate_trends(data, temp_col)
analysis[f'{temp_col}_trend'] = temp_trend * 24 # per day
if temp_trend * 24 > 0.5: # >0.5°C per day
alerts.append(f"Rapid {temp_col.replace('_', ' ')} rise: {temp_trend*24:.2f}°C/day at {station_name}")
# Anomaly detection
for col in ['water_level', 'water_temp', 'air_temp', 'wind_speed']:
if col in data.columns:
anomalies, z_scores = self.detect_anomalies(data, col)
anomaly_pct = (anomalies.sum() / len(data)) * 100
analysis[f'{col}_anomaly_frequency'] = anomaly_pct
if anomaly_pct > 10:
alerts.append(f"High {col.replace('_', ' ')} anomaly frequency: {anomaly_pct:.1f}% at {station_name}")
if not alerts:
alerts.append(f"No significant anomalies detected at {station_name}")
return analysis, alerts
# Initialize the enhanced agent
agent = EnhancedOceanClimateAgent()
def analyze_real_ocean_data(station_name, days_back, anomaly_sensitivity, use_real_data):
"""Main analysis function with real NOAA data"""
agent.anomaly_threshold = anomaly_sensitivity
if use_real_data:
print(f"Starting real data analysis for {station_name}")
# Fetch real NOAA data
raw_data, status_msg = agent.get_comprehensive_station_data(station_name, days_back)
if raw_data is None:
error_msg = f"Error fetching real data: {status_msg}"
print(error_msg)
return None, None, None, error_msg, "No alerts - data unavailable", None
# Process the data
data = agent.process_noaa_data(raw_data)
if data is None or data.empty:
error_msg = "No processable data available after fetching from NOAA"
print(error_msg)
return None, None, None, error_msg, "No alerts - data unavailable", None
data_source = f"Real NOAA data from {station_name} ({status_msg})"
print(f"{data_source}")
else:
print("🔧 Using synthetic demonstration data")
# Use synthetic data for demonstration
data = generate_synthetic_data(days_back)
data_source = f"🔧 Synthetic demonstration data ({days_back} days)"
# Generate analysis and alerts
analysis, alerts = agent.generate_climate_analysis(data, station_name)
# Create visualizations
fig1 = create_main_dashboard(data, agent)
fig2 = create_anomaly_plots(data, agent)
fig3 = create_correlation_plot(data)
# Format analysis text
analysis_text = format_analysis_results(analysis, data_source)
alerts_text = "\n".join([f"- {alert}" for alert in alerts])
# Create CSV for download
csv_file_path = save_csv_temp(data)
print("Analysis completed successfully")
return fig1, fig2, fig3, analysis_text, alerts_text, csv_file_path
def generate_synthetic_data(days):
"""Generate synthetic data for demonstration"""
dates = pd.date_range(start=datetime.now() - timedelta(days=days), periods=days*24, freq='H')
# Synthetic water level with tidal patterns
tidal_pattern = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 12.42) # M2 tide
water_level = 100 + tidal_pattern + np.random.normal(0, 0.3, len(dates))
# Water temperature with daily cycle
daily_temp_cycle = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 24)
water_temp = 15 + daily_temp_cycle + np.random.normal(0, 0.5, len(dates))
# Wind patterns
wind_speed = 5 + 3 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*3)) + np.random.normal(0, 1, len(dates))
wind_direction = 180 + 45 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*2)) + np.random.normal(0, 20, len(dates))
return pd.DataFrame({
'datetime': dates,
'water_level': water_level,
'water_temp': water_temp,
'wind_speed': np.maximum(0, wind_speed),
'wind_direction': wind_direction % 360,
'air_pressure': 1013 + np.random.normal(0, 10, len(dates))
})
def create_main_dashboard(data, agent):
"""Create main dashboard visualization"""
available_plots = []
plot_data = []
# Check what data is available
if 'water_level' in data.columns and not data['water_level'].isna().all():
available_plots.append(('Water Level', 'water_level', 'blue'))
if 'water_temp' in data.columns and not data['water_temp'].isna().all():
available_plots.append(('Water Temperature', 'water_temp', 'red'))
if 'air_temp' in data.columns and not data['air_temp'].isna().all():
available_plots.append(('Air Temperature', 'air_temp', 'orange'))
if 'wind_speed' in data.columns and not data['wind_speed'].isna().all():
available_plots.append(('Wind Speed', 'wind_speed', 'green'))
if 'air_pressure' in data.columns and not data['air_pressure'].isna().all():
available_plots.append(('Air Pressure', 'air_pressure', 'purple'))
if not available_plots:
fig = go.Figure()
fig.add_annotation(text="No data available for visualization",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return fig
# Create subplots based on available data
n_plots = len(available_plots)
rows = (n_plots + 1) // 2 # Ceiling division
cols = 2 if n_plots > 1 else 1
fig = make_subplots(
rows=rows, cols=cols,
subplot_titles=[plot[0] for plot in available_plots],
vertical_spacing=0.1
)
for i, (title, column, color) in enumerate(available_plots):
row = (i // 2) + 1
col = (i % 2) + 1
# Add main data line
fig.add_trace(
go.Scatter(x=data['datetime'], y=data[column],
name=title, line=dict(color=color)),
row=row, col=col
)
# Add anomalies if applicable
anomalies, _ = agent.detect_anomalies(data, column)
if anomalies.any():
anomaly_data = data[anomalies]
fig.add_trace(
go.Scatter(x=anomaly_data['datetime'], y=anomaly_data[column],
mode='markers', name=f'{title} Anomalies',
marker=dict(color='red', size=6)),
row=row, col=col
)
fig.update_layout(height=300*rows, showlegend=False, title_text="Ocean and Atmospheric Data Dashboard")
return fig
def create_anomaly_plots(data, agent):
"""Create anomaly detection plots"""
available_cols = [col for col in ['water_level', 'water_temp', 'air_temp', 'wind_speed']
if col in data.columns and not data[col].isna().all()]
if len(available_cols) == 0:
fig = go.Figure()
fig.add_annotation(text="No data available for anomaly detection",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return fig
n_plots = min(len(available_cols), 2) # Maximum 2 plots
fig = make_subplots(
rows=1, cols=n_plots,
subplot_titles=[f'{col.replace("_", " ").title()} Anomalies' for col in available_cols[:n_plots]]
)
colors = ['blue', 'red', 'green', 'purple']
for i, col in enumerate(available_cols[:n_plots]):
_, z_scores = agent.detect_anomalies(data, col)
fig.add_trace(
go.Scatter(x=data['datetime'], y=z_scores,
mode='lines', name=f'{col} Z-Score',
line=dict(color=colors[i % len(colors)])),
row=1, col=i+1
)
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=i+1)
fig.update_layout(height=400, showlegend=False, title_text="Anomaly Detection Analysis")
return fig
def create_correlation_plot(data):
"""Create correlation heatmap"""
numeric_cols = [col for col in ['water_level', 'water_temp', 'air_temp', 'wind_speed', 'air_pressure']
if col in data.columns and not data[col].isna().all()]
if len(numeric_cols) < 2:
# Return empty plot if insufficient data
fig = go.Figure()
fig.add_annotation(text="Insufficient data for correlation analysis",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return fig
corr_matrix = data[numeric_cols].corr()
fig = px.imshow(corr_matrix,
labels=dict(color="Correlation"),
color_continuous_scale='RdBu_r',
aspect="auto",
title="Parameter Correlations")
return fig
def format_analysis_results(analysis, data_source):
"""Format analysis results for display"""
result = f"### {data_source}\n\n**Key Trends:**\n"
if not analysis:
result += "- No analysis data available\n"
return result
for key, value in analysis.items():
if 'trend' in key:
param = key.replace('_trend', '').replace('_', ' ').title()
unit = 'cm/day' if 'water_level' in key else '°C/day' if 'temp' in key else 'units/day'
result += f"- {param}: {value:.3f} {unit}\n"
elif 'anomaly_frequency' in key:
param = key.replace('_anomaly_frequency', '').replace('_', ' ').title()
result += f"- {param} anomalies: {value:.1f}%\n"
return result
def save_csv_temp(data):
"""Save data to temporary CSV file"""
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8')
data.to_csv(tmp.name, index=False)
tmp.close()
return tmp.name
# Create Gradio interface
with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.themes.Ocean()) as demo:
gr.Markdown("""
# Enhanced Ocean Climate Monitoring AI Agent
### Real-time Analysis with NOAA Data Integration
This enhanced AI agent can fetch real ocean data from NOAA stations or use synthetic data for demonstration.
Monitor water levels, temperature, currents, and detect climate anomalies at major coastal locations.
**Note:** NOAA stations may not have all data types available. The system will use whatever data is accessible.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Configuration")
station_name = gr.Dropdown(
choices=list(agent.default_stations.keys()),
value="San Francisco, CA",
label="NOAA Station Location"
)
days_back = gr.Slider(
minimum=1,
maximum=30,
value=7,
step=1,
label="Days of Historical Data",
info="Shorter periods are more reliable"
)
anomaly_sensitivity = gr.Slider(
minimum=1.0,
maximum=3.0,
value=2.0,
step=0.1,
label="Anomaly Detection Sensitivity"
)
use_real_data = gr.Checkbox(
label="Use Real NOAA Data",
value=True,
info="Uncheck to use synthetic data"
)
analyze_btn = gr.Button("Analyze Ocean Data", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Climate Alerts")
alerts_output = gr.Markdown()
with gr.Row():
analysis_output = gr.Markdown()
with gr.Tab("Main Dashboard"):
dashboard_plot = gr.Plot()
with gr.Tab("Anomaly Detection"):
anomaly_plot = gr.Plot()
with gr.Tab("Correlations"):
correlation_plot = gr.Plot()
with gr.Tab("Data Export"):
gr.Markdown("### Download Analyzed Data")
csv_output = gr.File(label="Download CSV Data")
gr.Markdown("*Note: Real NOAA data usage is subject to their terms of service*")
# Set up the analysis function
analyze_btn.click(
fn=analyze_real_ocean_data,
inputs=[station_name, days_back, anomaly_sensitivity, use_real_data],
outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
)
# Auto-run on startup with synthetic data
demo.load(
fn=analyze_real_ocean_data,
inputs=[
gr.Text(value="San Francisco, CA", visible=False),
gr.Number(value=7, visible=False),
gr.Number(value=2.0, visible=False),
gr.Checkbox(value=False, visible=False) # Start with synthetic data
],
outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
)
if __name__ == "__main__":
demo.launch()