Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
import requests
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
import warnings
|
10 |
+
import json
|
11 |
+
warnings.filterwarnings('ignore')
|
12 |
+
|
13 |
+
class EnhancedOceanClimateAgent:
|
14 |
+
def __init__(self):
|
15 |
+
self.anomaly_threshold = 2.0
|
16 |
+
self.critical_temp_change = 1.5
|
17 |
+
|
18 |
+
# API endpoints
|
19 |
+
self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter"
|
20 |
+
self.noaa_stations_url = "https://api.tidesandcurrents.noaa.gov/mdapi/prod/webapi/stations.json"
|
21 |
+
|
22 |
+
# Popular NOAA stations for different regions
|
23 |
+
self.default_stations = {
|
24 |
+
"San Francisco, CA": "9414290",
|
25 |
+
"New York, NY": "8518750",
|
26 |
+
"Miami, FL": "8723214",
|
27 |
+
"Seattle, WA": "9447130",
|
28 |
+
"Boston, MA": "8443970",
|
29 |
+
"Los Angeles, CA": "9410660",
|
30 |
+
"Galveston, TX": "8771450",
|
31 |
+
"Charleston, SC": "8665530"
|
32 |
+
}
|
33 |
+
|
34 |
+
def get_noaa_data(self, station_id, product, start_date, end_date, units="metric"):
|
35 |
+
"""Fetch data from NOAA API"""
|
36 |
+
params = {
|
37 |
+
'product': product,
|
38 |
+
'application': 'OceanClimateAgent',
|
39 |
+
'begin_date': start_date.strftime('%Y%m%d'),
|
40 |
+
'end_date': end_date.strftime('%Y%m%d'),
|
41 |
+
'station': station_id,
|
42 |
+
'time_zone': 'gmt',
|
43 |
+
'units': units,
|
44 |
+
'format': 'json'
|
45 |
+
}
|
46 |
+
|
47 |
+
try:
|
48 |
+
response = requests.get(self.noaa_base_url, params=params, timeout=30)
|
49 |
+
if response.status_code == 200:
|
50 |
+
data = response.json()
|
51 |
+
if 'data' in data:
|
52 |
+
return pd.DataFrame(data['data'])
|
53 |
+
else:
|
54 |
+
print(f"No data returned for {product}: {data.get('error', {}).get('message', 'Unknown error')}")
|
55 |
+
return None
|
56 |
+
else:
|
57 |
+
print(f"API error {response.status_code} for {product}")
|
58 |
+
return None
|
59 |
+
except Exception as e:
|
60 |
+
print(f"Error fetching {product}: {str(e)}")
|
61 |
+
return None
|
62 |
+
|
63 |
+
def get_comprehensive_station_data(self, station_name, days_back=30):
|
64 |
+
"""Get comprehensive data from a NOAA station"""
|
65 |
+
station_id = self.default_stations.get(station_name)
|
66 |
+
if not station_id:
|
67 |
+
return None, "Station not found"
|
68 |
+
|
69 |
+
end_date = datetime.now()
|
70 |
+
start_date = end_date - timedelta(days=days_back)
|
71 |
+
|
72 |
+
# Available NOAA products
|
73 |
+
products_to_fetch = {
|
74 |
+
'water_level': 'water_level',
|
75 |
+
'water_temperature': 'water_temperature',
|
76 |
+
'air_temperature': 'air_temperature',
|
77 |
+
'wind': 'wind',
|
78 |
+
'air_pressure': 'air_pressure',
|
79 |
+
'salinity': 'salinity',
|
80 |
+
'currents': 'currents'
|
81 |
+
}
|
82 |
+
|
83 |
+
all_data = {}
|
84 |
+
success_count = 0
|
85 |
+
|
86 |
+
for product_name, product_code in products_to_fetch.items():
|
87 |
+
data = self.get_noaa_data(station_id, product_code, start_date, end_date)
|
88 |
+
if data is not None and not data.empty:
|
89 |
+
all_data[product_name] = data
|
90 |
+
success_count += 1
|
91 |
+
|
92 |
+
if success_count == 0:
|
93 |
+
return None, "No data available for this station and time period"
|
94 |
+
|
95 |
+
return all_data, f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types"
|
96 |
+
|
97 |
+
def process_noaa_data(self, raw_data):
|
98 |
+
"""Process and combine NOAA data for analysis"""
|
99 |
+
if not raw_data:
|
100 |
+
return None
|
101 |
+
|
102 |
+
# Process water level data (primary dataset)
|
103 |
+
if 'water_level' in raw_data:
|
104 |
+
df = raw_data['water_level'].copy()
|
105 |
+
df['datetime'] = pd.to_datetime(df['t'])
|
106 |
+
df['water_level'] = pd.to_numeric(df['v'], errors='coerce')
|
107 |
+
|
108 |
+
# Add other parameters when available
|
109 |
+
if 'water_temperature' in raw_data:
|
110 |
+
temp_df = raw_data['water_temperature'].copy()
|
111 |
+
temp_df['datetime'] = pd.to_datetime(temp_df['t'])
|
112 |
+
temp_df['water_temp'] = pd.to_numeric(temp_df['v'], errors='coerce')
|
113 |
+
df = df.merge(temp_df[['datetime', 'water_temp']], on='datetime', how='left')
|
114 |
+
|
115 |
+
if 'air_temperature' in raw_data:
|
116 |
+
air_temp_df = raw_data['air_temperature'].copy()
|
117 |
+
air_temp_df['datetime'] = pd.to_datetime(air_temp_df['t'])
|
118 |
+
air_temp_df['air_temp'] = pd.to_numeric(air_temp_df['v'], errors='coerce')
|
119 |
+
df = df.merge(air_temp_df[['datetime', 'air_temp']], on='datetime', how='left')
|
120 |
+
|
121 |
+
if 'wind' in raw_data:
|
122 |
+
wind_df = raw_data['wind'].copy()
|
123 |
+
wind_df['datetime'] = pd.to_datetime(wind_df['t'])
|
124 |
+
wind_df['wind_speed'] = pd.to_numeric(wind_df['s'], errors='coerce')
|
125 |
+
wind_df['wind_direction'] = pd.to_numeric(wind_df['d'], errors='coerce')
|
126 |
+
df = df.merge(wind_df[['datetime', 'wind_speed', 'wind_direction']], on='datetime', how='left')
|
127 |
+
|
128 |
+
if 'air_pressure' in raw_data:
|
129 |
+
pressure_df = raw_data['air_pressure'].copy()
|
130 |
+
pressure_df['datetime'] = pd.to_datetime(pressure_df['t'])
|
131 |
+
pressure_df['air_pressure'] = pd.to_numeric(pressure_df['v'], errors='coerce')
|
132 |
+
df = df.merge(pressure_df[['datetime', 'air_pressure']], on='datetime', how='left')
|
133 |
+
|
134 |
+
if 'salinity' in raw_data:
|
135 |
+
salinity_df = raw_data['salinity'].copy()
|
136 |
+
salinity_df['datetime'] = pd.to_datetime(salinity_df['t'])
|
137 |
+
salinity_df['salinity'] = pd.to_numeric(salinity_df['v'], errors='coerce')
|
138 |
+
df = df.merge(salinity_df[['datetime', 'salinity']], on='datetime', how='left')
|
139 |
+
|
140 |
+
return df
|
141 |
+
|
142 |
+
return None
|
143 |
+
|
144 |
+
def detect_anomalies(self, data, column, window=24): # 24 hours for hourly data
|
145 |
+
"""Detect anomalies using rolling statistics"""
|
146 |
+
if column not in data.columns or data[column].isna().all():
|
147 |
+
return pd.Series([False] * len(data)), pd.Series([0] * len(data))
|
148 |
+
|
149 |
+
rolling_mean = data[column].rolling(window=window, center=True, min_periods=1).mean()
|
150 |
+
rolling_std = data[column].rolling(window=window, center=True, min_periods=1).std()
|
151 |
+
|
152 |
+
# Avoid division by zero
|
153 |
+
rolling_std = rolling_std.fillna(1)
|
154 |
+
rolling_std = rolling_std.replace(0, 1)
|
155 |
+
|
156 |
+
z_scores = np.abs((data[column] - rolling_mean) / rolling_std)
|
157 |
+
anomalies = z_scores > self.anomaly_threshold
|
158 |
+
|
159 |
+
return anomalies, z_scores
|
160 |
+
|
161 |
+
def calculate_trends(self, data, column, hours=168): # 7 days
|
162 |
+
"""Calculate trend over specified period"""
|
163 |
+
if column not in data.columns or data[column].isna().all():
|
164 |
+
return 0
|
165 |
+
|
166 |
+
recent_data = data.tail(hours)
|
167 |
+
if len(recent_data) < 2:
|
168 |
+
return 0
|
169 |
+
|
170 |
+
x = np.arange(len(recent_data))
|
171 |
+
y = recent_data[column].dropna()
|
172 |
+
|
173 |
+
if len(y) < 2:
|
174 |
+
return 0
|
175 |
+
|
176 |
+
x = x[:len(y)]
|
177 |
+
slope = np.polyfit(x, y, 1)[0] if len(x) > 1 else 0
|
178 |
+
return slope
|
179 |
+
|
180 |
+
def generate_climate_analysis(self, data, station_name):
|
181 |
+
"""Generate comprehensive climate analysis"""
|
182 |
+
if data is None or data.empty:
|
183 |
+
return {}, []
|
184 |
+
|
185 |
+
analysis = {}
|
186 |
+
alerts = []
|
187 |
+
|
188 |
+
# Water level analysis
|
189 |
+
if 'water_level' in data.columns:
|
190 |
+
wl_trend = self.calculate_trends(data, 'water_level')
|
191 |
+
analysis['water_level_trend'] = wl_trend * 24 # per day
|
192 |
+
|
193 |
+
if abs(wl_trend * 24) > 5: # >5cm per day change
|
194 |
+
alerts.append(f"🟡 Significant water level change: {wl_trend*24:.1f}cm/day at {station_name}")
|
195 |
+
|
196 |
+
# Temperature analysis
|
197 |
+
if 'water_temp' in data.columns:
|
198 |
+
temp_trend = self.calculate_trends(data, 'water_temp')
|
199 |
+
analysis['water_temp_trend'] = temp_trend * 24 # per day
|
200 |
+
|
201 |
+
if temp_trend * 24 > 0.5: # >0.5°C per day
|
202 |
+
alerts.append(f"🔴 Rapid water temperature rise: {temp_trend*24:.2f}°C/day at {station_name}")
|
203 |
+
|
204 |
+
# Anomaly detection
|
205 |
+
for col in ['water_level', 'water_temp', 'wind_speed']:
|
206 |
+
if col in data.columns:
|
207 |
+
anomalies, z_scores = self.detect_anomalies(data, col)
|
208 |
+
anomaly_pct = (anomalies.sum() / len(data)) * 100
|
209 |
+
analysis[f'{col}_anomaly_frequency'] = anomaly_pct
|
210 |
+
|
211 |
+
if anomaly_pct > 10:
|
212 |
+
alerts.append(f"🟡 High {col.replace('_', ' ')} anomaly frequency: {anomaly_pct:.1f}% at {station_name}")
|
213 |
+
|
214 |
+
if not alerts:
|
215 |
+
alerts.append(f"✅ No significant anomalies detected at {station_name}")
|
216 |
+
|
217 |
+
return analysis, alerts
|
218 |
+
|
219 |
+
# Initialize the enhanced agent
|
220 |
+
agent = EnhancedOceanClimateAgent()
|
221 |
+
|
222 |
+
def analyze_real_ocean_data(station_name, days_back, anomaly_sensitivity, use_real_data):
|
223 |
+
"""Main analysis function with real NOAA data"""
|
224 |
+
|
225 |
+
agent.anomaly_threshold = anomaly_sensitivity
|
226 |
+
|
227 |
+
if use_real_data:
|
228 |
+
# Fetch real NOAA data
|
229 |
+
raw_data, status_msg = agent.get_comprehensive_station_data(station_name, days_back)
|
230 |
+
|
231 |
+
if raw_data is None:
|
232 |
+
return None, None, None, f"❌ Error: {status_msg}", "No alerts - data unavailable", None
|
233 |
+
|
234 |
+
# Process the data
|
235 |
+
data = agent.process_noaa_data(raw_data)
|
236 |
+
|
237 |
+
if data is None or data.empty:
|
238 |
+
return None, None, None, "❌ No processable data available", "No alerts - data unavailable", None
|
239 |
+
|
240 |
+
data_source = f"📡 Real NOAA data from {station_name} ({status_msg})"
|
241 |
+
|
242 |
+
else:
|
243 |
+
# Use synthetic data for demonstration
|
244 |
+
data = generate_synthetic_data(days_back)
|
245 |
+
data_source = f"🔬 Synthetic demonstration data ({days_back} days)"
|
246 |
+
|
247 |
+
# Generate analysis and alerts
|
248 |
+
analysis, alerts = agent.generate_climate_analysis(data, station_name)
|
249 |
+
|
250 |
+
# Create visualizations
|
251 |
+
fig1 = create_main_dashboard(data, agent)
|
252 |
+
fig2 = create_anomaly_plots(data, agent)
|
253 |
+
fig3 = create_correlation_plot(data)
|
254 |
+
|
255 |
+
# Format analysis text
|
256 |
+
analysis_text = format_analysis_results(analysis, data_source)
|
257 |
+
alerts_text = "\n".join([f"- {alert}" for alert in alerts])
|
258 |
+
|
259 |
+
# Create CSV for download
|
260 |
+
csv_data = data.to_csv(index=False) if data is not None else ""
|
261 |
+
|
262 |
+
return fig1, fig2, fig3, analysis_text, alerts_text, csv_data
|
263 |
+
|
264 |
+
def generate_synthetic_data(days):
|
265 |
+
"""Generate synthetic data for demonstration"""
|
266 |
+
dates = pd.date_range(start=datetime.now() - timedelta(days=days), periods=days*24, freq='H')
|
267 |
+
|
268 |
+
# Synthetic water level with tidal patterns
|
269 |
+
tidal_pattern = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 12.42) # M2 tide
|
270 |
+
water_level = 100 + tidal_pattern + np.random.normal(0, 0.3, len(dates))
|
271 |
+
|
272 |
+
# Water temperature with daily cycle
|
273 |
+
daily_temp_cycle = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 24)
|
274 |
+
water_temp = 15 + daily_temp_cycle + np.random.normal(0, 0.5, len(dates))
|
275 |
+
|
276 |
+
# Wind patterns
|
277 |
+
wind_speed = 5 + 3 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*3)) + np.random.normal(0, 1, len(dates))
|
278 |
+
wind_direction = 180 + 45 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*2)) + np.random.normal(0, 20, len(dates))
|
279 |
+
|
280 |
+
return pd.DataFrame({
|
281 |
+
'datetime': dates,
|
282 |
+
'water_level': water_level,
|
283 |
+
'water_temp': water_temp,
|
284 |
+
'wind_speed': np.maximum(0, wind_speed),
|
285 |
+
'wind_direction': wind_direction % 360,
|
286 |
+
'air_pressure': 1013 + np.random.normal(0, 10, len(dates))
|
287 |
+
})
|
288 |
+
|
289 |
+
def create_main_dashboard(data, agent):
|
290 |
+
"""Create main dashboard visualization"""
|
291 |
+
fig = make_subplots(
|
292 |
+
rows=2, cols=2,
|
293 |
+
subplot_titles=('Water Level', 'Water Temperature', 'Wind Speed', 'Air Pressure'),
|
294 |
+
vertical_spacing=0.1
|
295 |
+
)
|
296 |
+
|
297 |
+
# Water Level
|
298 |
+
if 'water_level' in data.columns:
|
299 |
+
fig.add_trace(
|
300 |
+
go.Scatter(x=data['datetime'], y=data['water_level'],
|
301 |
+
name='Water Level', line=dict(color='blue')),
|
302 |
+
row=1, col=1
|
303 |
+
)
|
304 |
+
|
305 |
+
# Add anomalies
|
306 |
+
anomalies, _ = agent.detect_anomalies(data, 'water_level')
|
307 |
+
if anomalies.any():
|
308 |
+
anomaly_data = data[anomalies]
|
309 |
+
fig.add_trace(
|
310 |
+
go.Scatter(x=anomaly_data['datetime'], y=anomaly_data['water_level'],
|
311 |
+
mode='markers', name='Anomalies',
|
312 |
+
marker=dict(color='red', size=6)),
|
313 |
+
row=1, col=1
|
314 |
+
)
|
315 |
+
|
316 |
+
# Water Temperature
|
317 |
+
if 'water_temp' in data.columns:
|
318 |
+
fig.add_trace(
|
319 |
+
go.Scatter(x=data['datetime'], y=data['water_temp'],
|
320 |
+
name='Water Temp', line=dict(color='red')),
|
321 |
+
row=1, col=2
|
322 |
+
)
|
323 |
+
|
324 |
+
# Wind Speed
|
325 |
+
if 'wind_speed' in data.columns:
|
326 |
+
fig.add_trace(
|
327 |
+
go.Scatter(x=data['datetime'], y=data['wind_speed'],
|
328 |
+
name='Wind Speed', line=dict(color='green')),
|
329 |
+
row=2, col=1
|
330 |
+
)
|
331 |
+
|
332 |
+
# Air Pressure
|
333 |
+
if 'air_pressure' in data.columns:
|
334 |
+
fig.add_trace(
|
335 |
+
go.Scatter(x=data['datetime'], y=data['air_pressure'],
|
336 |
+
name='Air Pressure', line=dict(color='purple')),
|
337 |
+
row=2, col=2
|
338 |
+
)
|
339 |
+
|
340 |
+
fig.update_layout(height=600, showlegend=False, title_text="Ocean and Atmospheric Data Dashboard")
|
341 |
+
return fig
|
342 |
+
|
343 |
+
def create_anomaly_plots(data, agent):
|
344 |
+
"""Create anomaly detection plots"""
|
345 |
+
fig = make_subplots(
|
346 |
+
rows=1, cols=2,
|
347 |
+
subplot_titles=('Water Level Anomalies', 'Temperature Anomalies')
|
348 |
+
)
|
349 |
+
|
350 |
+
# Water level anomalies
|
351 |
+
if 'water_level' in data.columns:
|
352 |
+
_, z_scores = agent.detect_anomalies(data, 'water_level')
|
353 |
+
fig.add_trace(
|
354 |
+
go.Scatter(x=data['datetime'], y=z_scores,
|
355 |
+
mode='lines', name='Water Level Z-Score'),
|
356 |
+
row=1, col=1
|
357 |
+
)
|
358 |
+
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=1)
|
359 |
+
|
360 |
+
# Temperature anomalies
|
361 |
+
if 'water_temp' in data.columns:
|
362 |
+
_, z_scores = agent.detect_anomalies(data, 'water_temp')
|
363 |
+
fig.add_trace(
|
364 |
+
go.Scatter(x=data['datetime'], y=z_scores,
|
365 |
+
mode='lines', name='Temperature Z-Score', line=dict(color='red')),
|
366 |
+
row=1, col=2
|
367 |
+
)
|
368 |
+
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=2)
|
369 |
+
|
370 |
+
fig.update_layout(height=400, showlegend=False, title_text="Anomaly Detection Analysis")
|
371 |
+
return fig
|
372 |
+
|
373 |
+
def create_correlation_plot(data):
|
374 |
+
"""Create correlation heatmap"""
|
375 |
+
numeric_cols = [col for col in ['water_level', 'water_temp', 'wind_speed', 'air_pressure']
|
376 |
+
if col in data.columns]
|
377 |
+
|
378 |
+
if len(numeric_cols) < 2:
|
379 |
+
# Return empty plot if insufficient data
|
380 |
+
fig = go.Figure()
|
381 |
+
fig.add_annotation(text="Insufficient data for correlation analysis",
|
382 |
+
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
383 |
+
return fig
|
384 |
+
|
385 |
+
corr_matrix = data[numeric_cols].corr()
|
386 |
+
|
387 |
+
fig = px.imshow(corr_matrix,
|
388 |
+
labels=dict(color="Correlation"),
|
389 |
+
color_continuous_scale='RdBu_r',
|
390 |
+
aspect="auto",
|
391 |
+
title="Parameter Correlations")
|
392 |
+
return fig
|
393 |
+
|
394 |
+
def format_analysis_results(analysis, data_source):
|
395 |
+
"""Format analysis results for display"""
|
396 |
+
result = f"### {data_source}\n\n**Key Trends:**\n"
|
397 |
+
|
398 |
+
for key, value in analysis.items():
|
399 |
+
if 'trend' in key:
|
400 |
+
param = key.replace('_trend', '').replace('_', ' ').title()
|
401 |
+
unit = 'cm/day' if 'water_level' in key else '°C/day' if 'temp' in key else 'units/day'
|
402 |
+
result += f"- {param}: {value:.3f} {unit}\n"
|
403 |
+
elif 'anomaly_frequency' in key:
|
404 |
+
param = key.replace('_anomaly_frequency', '').replace('_', ' ').title()
|
405 |
+
result += f"- {param} anomalies: {value:.1f}%\n"
|
406 |
+
|
407 |
+
return result
|
408 |
+
|
409 |
+
# Create Gradio interface
|
410 |
+
with gr.Blocks(title="🌊 Enhanced Ocean Climate Monitoring AI Agent", theme=gr.themes.Ocean()) as demo:
|
411 |
+
gr.Markdown("""
|
412 |
+
# 🌊 Enhanced Ocean Climate Monitoring AI Agent
|
413 |
+
### Real-time Analysis with NOAA Data Integration
|
414 |
+
|
415 |
+
This enhanced AI agent can fetch real ocean data from NOAA stations or use synthetic data for demonstration.
|
416 |
+
Monitor water levels, temperature, currents, and detect climate anomalies at major coastal locations.
|
417 |
+
""")
|
418 |
+
|
419 |
+
with gr.Row():
|
420 |
+
with gr.Column(scale=1):
|
421 |
+
gr.Markdown("### Configuration")
|
422 |
+
station_name = gr.Dropdown(
|
423 |
+
choices=list(agent.default_stations.keys()),
|
424 |
+
value="San Francisco, CA",
|
425 |
+
label="NOAA Station Location"
|
426 |
+
)
|
427 |
+
days_back = gr.Slider(
|
428 |
+
minimum=7,
|
429 |
+
maximum=90,
|
430 |
+
value=30,
|
431 |
+
step=1,
|
432 |
+
label="Days of Historical Data"
|
433 |
+
)
|
434 |
+
anomaly_sensitivity = gr.Slider(
|
435 |
+
minimum=1.0,
|
436 |
+
maximum=3.0,
|
437 |
+
value=2.0,
|
438 |
+
step=0.1,
|
439 |
+
label="Anomaly Detection Sensitivity"
|
440 |
+
)
|
441 |
+
use_real_data = gr.Checkbox(
|
442 |
+
label="Use Real NOAA Data",
|
443 |
+
value=True,
|
444 |
+
info="Uncheck to use synthetic data"
|
445 |
+
)
|
446 |
+
analyze_btn = gr.Button("🔍 Analyze Ocean Data", variant="primary")
|
447 |
+
|
448 |
+
with gr.Column(scale=2):
|
449 |
+
gr.Markdown("### Climate Alerts")
|
450 |
+
alerts_output = gr.Markdown()
|
451 |
+
|
452 |
+
with gr.Row():
|
453 |
+
analysis_output = gr.Markdown()
|
454 |
+
|
455 |
+
with gr.Tab("Main Dashboard"):
|
456 |
+
dashboard_plot = gr.Plot()
|
457 |
+
|
458 |
+
with gr.Tab("Anomaly Detection"):
|
459 |
+
anomaly_plot = gr.Plot()
|
460 |
+
|
461 |
+
with gr.Tab("Correlations"):
|
462 |
+
correlation_plot = gr.Plot()
|
463 |
+
|
464 |
+
with gr.Tab("Data Export"):
|
465 |
+
gr.Markdown("### Download Analyzed Data")
|
466 |
+
csv_output = gr.File(label="Download CSV Data")
|
467 |
+
gr.Markdown("*Note: Real NOAA data usage is subject to their terms of service*")
|
468 |
+
|
469 |
+
# Set up the analysis function
|
470 |
+
analyze_btn.click(
|
471 |
+
fn=analyze_real_ocean_data,
|
472 |
+
inputs=[station_name, days_back, anomaly_sensitivity, use_real_data],
|
473 |
+
outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
|
474 |
+
)
|
475 |
+
|
476 |
+
# Auto-run on startup with synthetic data
|
477 |
+
demo.load(
|
478 |
+
fn=analyze_real_ocean_data,
|
479 |
+
inputs=[
|
480 |
+
gr.Text(value="San Francisco, CA", visible=False),
|
481 |
+
gr.Number(value=30, visible=False),
|
482 |
+
gr.Number(value=2.0, visible=False),
|
483 |
+
gr.Checkbox(value=False, visible=False) # Start with synthetic data
|
484 |
+
],
|
485 |
+
outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output]
|
486 |
+
)
|
487 |
+
|
488 |
+
if __name__ == "__main__":
|
489 |
+
demo.launch()
|