Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -17,8 +17,8 @@ class EnhancedOceanClimateAgent:
|
|
17 |
self.anomaly_threshold = 2.0
|
18 |
self.critical_temp_change = 1.5
|
19 |
|
20 |
-
#
|
21 |
-
self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter
|
22 |
self.noaa_stations_url = "https://api.tidesandcurrents.noaa.gov/mdapi/prod/webapi/stations.json"
|
23 |
|
24 |
# Popular NOAA stations for different regions
|
@@ -33,47 +33,58 @@ class EnhancedOceanClimateAgent:
|
|
33 |
"Charleston, SC": "8665530"
|
34 |
}
|
35 |
|
36 |
-
def get_noaa_data(self, station_id, product,
|
37 |
-
"""Fetch data
|
|
|
|
|
|
|
|
|
38 |
params = {
|
|
|
39 |
'product': product,
|
|
|
|
|
|
|
40 |
'application': 'OceanClimateAgent',
|
41 |
-
'begin_date': start_date.strftime('%Y%m%d'),
|
42 |
-
'end_date': end_date.strftime('%Y%m%d'),
|
43 |
-
'station': station_id,
|
44 |
'time_zone': 'gmt',
|
45 |
'units': units,
|
46 |
'format': 'json'
|
47 |
}
|
48 |
-
|
49 |
try:
|
50 |
-
print(f"
|
51 |
-
print("
|
52 |
-
|
53 |
-
# Print full API URL for testing
|
54 |
-
full_url = f"{self.noaa_base_url}?{urlencode(params)}"
|
55 |
-
print(f"π NOAA API URL: {full_url}")
|
56 |
-
|
57 |
response = requests.get(self.noaa_base_url, params=params, timeout=30)
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
else:
|
70 |
-
print(f"β
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
print(f"β Request failed for {product}: {str(e)}")
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def get_comprehensive_station_data(self, station_name, days_back=30):
|
79 |
"""Get comprehensive data from a NOAA station"""
|
@@ -81,35 +92,40 @@ class EnhancedOceanClimateAgent:
|
|
81 |
if not station_id:
|
82 |
return None, "Station not found"
|
83 |
|
84 |
-
# Ensure end_date is not in the future
|
85 |
-
|
86 |
-
end_date = min(datetime.utcnow(), today)
|
87 |
start_date = end_date - timedelta(days=days_back)
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
'
|
96 |
-
'
|
97 |
-
'
|
98 |
-
'
|
99 |
-
|
|
|
100 |
|
101 |
all_data = {}
|
102 |
success_count = 0
|
103 |
|
104 |
-
for product_name, product_code in products_to_fetch
|
|
|
105 |
data = self.get_noaa_data(station_id, product_code, start_date, end_date)
|
|
|
106 |
if data is not None and not data.empty:
|
107 |
all_data[product_name] = data
|
108 |
success_count += 1
|
|
|
|
|
|
|
109 |
|
110 |
if success_count == 0:
|
111 |
-
return None, "No data available for
|
112 |
|
|
|
113 |
return all_data, f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types"
|
114 |
|
115 |
def process_noaa_data(self, raw_data):
|
@@ -117,47 +133,66 @@ class EnhancedOceanClimateAgent:
|
|
117 |
if not raw_data:
|
118 |
return None
|
119 |
|
120 |
-
|
|
|
|
|
121 |
if 'water_level' in raw_data:
|
122 |
df = raw_data['water_level'].copy()
|
123 |
df['datetime'] = pd.to_datetime(df['t'])
|
124 |
df['water_level'] = pd.to_numeric(df['v'], errors='coerce')
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
salinity_df = raw_data['salinity'].copy()
|
154 |
-
salinity_df['datetime'] = pd.to_datetime(salinity_df['t'])
|
155 |
-
salinity_df['salinity'] = pd.to_numeric(salinity_df['v'], errors='coerce')
|
156 |
-
df = df.merge(salinity_df[['datetime', 'salinity']], on='datetime', how='left')
|
157 |
-
|
158 |
-
return df
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
def detect_anomalies(self, data, column, window=24): # 24 hours for hourly data
|
163 |
"""Detect anomalies using rolling statistics"""
|
@@ -212,15 +247,16 @@ class EnhancedOceanClimateAgent:
|
|
212 |
alerts.append(f"Significant water level change: {wl_trend*24:.1f}cm/day at {station_name}")
|
213 |
|
214 |
# Temperature analysis
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
221 |
|
222 |
# Anomaly detection
|
223 |
-
for col in ['water_level', 'water_temp', 'wind_speed']:
|
224 |
if col in data.columns:
|
225 |
anomalies, z_scores = self.detect_anomalies(data, col)
|
226 |
anomaly_pct = (anomalies.sum() / len(data)) * 100
|
@@ -243,24 +279,31 @@ def analyze_real_ocean_data(station_name, days_back, anomaly_sensitivity, use_re
|
|
243 |
agent.anomaly_threshold = anomaly_sensitivity
|
244 |
|
245 |
if use_real_data:
|
|
|
246 |
# Fetch real NOAA data
|
247 |
raw_data, status_msg = agent.get_comprehensive_station_data(station_name, days_back)
|
248 |
|
249 |
if raw_data is None:
|
250 |
-
|
|
|
|
|
251 |
|
252 |
# Process the data
|
253 |
data = agent.process_noaa_data(raw_data)
|
254 |
|
255 |
if data is None or data.empty:
|
256 |
-
|
|
|
|
|
257 |
|
258 |
-
data_source = f"Real NOAA data from {station_name} ({status_msg})"
|
|
|
259 |
|
260 |
else:
|
|
|
261 |
# Use synthetic data for demonstration
|
262 |
data = generate_synthetic_data(days_back)
|
263 |
-
data_source = f"Synthetic demonstration data ({days_back} days)"
|
264 |
|
265 |
# Generate analysis and alerts
|
266 |
analysis, alerts = agent.generate_climate_analysis(data, station_name)
|
@@ -275,17 +318,9 @@ def analyze_real_ocean_data(station_name, days_back, anomaly_sensitivity, use_re
|
|
275 |
alerts_text = "\n".join([f"- {alert}" for alert in alerts])
|
276 |
|
277 |
# Create CSV for download
|
278 |
-
import tempfile
|
279 |
-
|
280 |
-
#Create CSV
|
281 |
-
def save_csv_temp(data):
|
282 |
-
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8')
|
283 |
-
data.to_csv(tmp.name, index=False)
|
284 |
-
tmp.close()
|
285 |
-
return tmp.name
|
286 |
-
|
287 |
-
|
288 |
csv_file_path = save_csv_temp(data)
|
|
|
|
|
289 |
return fig1, fig2, fig3, analysis_text, alerts_text, csv_file_path
|
290 |
|
291 |
|
@@ -316,92 +351,100 @@ def generate_synthetic_data(days):
|
|
316 |
|
317 |
def create_main_dashboard(data, agent):
|
318 |
"""Create main dashboard visualization"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
fig = make_subplots(
|
320 |
-
rows=
|
321 |
-
subplot_titles=
|
322 |
vertical_spacing=0.1
|
323 |
)
|
324 |
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
327 |
fig.add_trace(
|
328 |
-
go.Scatter(x=data['datetime'], y=data[
|
329 |
-
name=
|
330 |
-
row=
|
331 |
)
|
332 |
|
333 |
-
# Add anomalies
|
334 |
-
anomalies, _ = agent.detect_anomalies(data,
|
335 |
if anomalies.any():
|
336 |
anomaly_data = data[anomalies]
|
337 |
fig.add_trace(
|
338 |
-
go.Scatter(x=anomaly_data['datetime'], y=anomaly_data[
|
339 |
-
mode='markers', name='Anomalies',
|
340 |
marker=dict(color='red', size=6)),
|
341 |
-
row=
|
342 |
)
|
343 |
|
344 |
-
|
345 |
-
if 'water_temp' in data.columns:
|
346 |
-
fig.add_trace(
|
347 |
-
go.Scatter(x=data['datetime'], y=data['water_temp'],
|
348 |
-
name='Water Temp', line=dict(color='red')),
|
349 |
-
row=1, col=2
|
350 |
-
)
|
351 |
-
|
352 |
-
# Wind Speed
|
353 |
-
if 'wind_speed' in data.columns:
|
354 |
-
fig.add_trace(
|
355 |
-
go.Scatter(x=data['datetime'], y=data['wind_speed'],
|
356 |
-
name='Wind Speed', line=dict(color='green')),
|
357 |
-
row=2, col=1
|
358 |
-
)
|
359 |
-
|
360 |
-
# Air Pressure
|
361 |
-
if 'air_pressure' in data.columns:
|
362 |
-
fig.add_trace(
|
363 |
-
go.Scatter(x=data['datetime'], y=data['air_pressure'],
|
364 |
-
name='Air Pressure', line=dict(color='purple')),
|
365 |
-
row=2, col=2
|
366 |
-
)
|
367 |
-
|
368 |
-
fig.update_layout(height=600, showlegend=False, title_text="Ocean and Atmospheric Data Dashboard")
|
369 |
return fig
|
370 |
|
371 |
def create_anomaly_plots(data, agent):
|
372 |
"""Create anomaly detection plots"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
fig = make_subplots(
|
374 |
-
rows=1, cols=
|
375 |
-
subplot_titles=(
|
376 |
)
|
377 |
|
378 |
-
|
379 |
-
if 'water_level' in data.columns:
|
380 |
-
_, z_scores = agent.detect_anomalies(data, 'water_level')
|
381 |
-
fig.add_trace(
|
382 |
-
go.Scatter(x=data['datetime'], y=z_scores,
|
383 |
-
mode='lines', name='Water Level Z-Score'),
|
384 |
-
row=1, col=1
|
385 |
-
)
|
386 |
-
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=1)
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
_, z_scores = agent.detect_anomalies(data, 'water_temp')
|
391 |
fig.add_trace(
|
392 |
go.Scatter(x=data['datetime'], y=z_scores,
|
393 |
-
mode='lines', name='
|
394 |
-
|
|
|
395 |
)
|
396 |
-
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=
|
397 |
|
398 |
fig.update_layout(height=400, showlegend=False, title_text="Anomaly Detection Analysis")
|
399 |
return fig
|
400 |
|
401 |
def create_correlation_plot(data):
|
402 |
"""Create correlation heatmap"""
|
403 |
-
numeric_cols = [col for col in ['water_level', 'water_temp', 'wind_speed', 'air_pressure']
|
404 |
-
if col in data.columns]
|
405 |
|
406 |
if len(numeric_cols) < 2:
|
407 |
# Return empty plot if insufficient data
|
@@ -423,6 +466,10 @@ def format_analysis_results(analysis, data_source):
|
|
423 |
"""Format analysis results for display"""
|
424 |
result = f"### {data_source}\n\n**Key Trends:**\n"
|
425 |
|
|
|
|
|
|
|
|
|
426 |
for key, value in analysis.items():
|
427 |
if 'trend' in key:
|
428 |
param = key.replace('_trend', '').replace('_', ' ').title()
|
@@ -434,6 +481,13 @@ def format_analysis_results(analysis, data_source):
|
|
434 |
|
435 |
return result
|
436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
# Create Gradio interface
|
438 |
with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.themes.Ocean()) as demo:
|
439 |
gr.Markdown("""
|
@@ -442,6 +496,8 @@ with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.them
|
|
442 |
|
443 |
This enhanced AI agent can fetch real ocean data from NOAA stations or use synthetic data for demonstration.
|
444 |
Monitor water levels, temperature, currents, and detect climate anomalies at major coastal locations.
|
|
|
|
|
445 |
""")
|
446 |
|
447 |
with gr.Row():
|
@@ -453,11 +509,12 @@ with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.them
|
|
453 |
label="NOAA Station Location"
|
454 |
)
|
455 |
days_back = gr.Slider(
|
456 |
-
minimum=
|
457 |
-
maximum=
|
458 |
-
value=
|
459 |
step=1,
|
460 |
-
label="Days of Historical Data"
|
|
|
461 |
)
|
462 |
anomaly_sensitivity = gr.Slider(
|
463 |
minimum=1.0,
|
@@ -506,7 +563,7 @@ with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.them
|
|
506 |
fn=analyze_real_ocean_data,
|
507 |
inputs=[
|
508 |
gr.Text(value="San Francisco, CA", visible=False),
|
509 |
-
gr.Number(value=
|
510 |
gr.Number(value=2.0, visible=False),
|
511 |
gr.Checkbox(value=False, visible=False) # Start with synthetic data
|
512 |
],
|
|
|
17 |
self.anomaly_threshold = 2.0
|
18 |
self.critical_temp_change = 1.5
|
19 |
|
20 |
+
# Fixed NOAA API base URL
|
21 |
+
self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter"
|
22 |
self.noaa_stations_url = "https://api.tidesandcurrents.noaa.gov/mdapi/prod/webapi/stations.json"
|
23 |
|
24 |
# Popular NOAA stations for different regions
|
|
|
33 |
"Charleston, SC": "8665530"
|
34 |
}
|
35 |
|
36 |
+
def get_noaa_data(self, station_id, product, begin_date, end_date, units="metric"):
|
37 |
+
"""Fetch NOAA data for a given product and date range"""
|
38 |
+
# Format dates for NOAA API
|
39 |
+
begin_str = begin_date.strftime("%Y%m%d %H:%M")
|
40 |
+
end_str = end_date.strftime("%Y%m%d %H:%M")
|
41 |
+
|
42 |
params = {
|
43 |
+
'station': station_id,
|
44 |
'product': product,
|
45 |
+
'begin_date': begin_str,
|
46 |
+
'end_date': end_str,
|
47 |
+
'datum': 'MLLW', # Mean Lower Low Water
|
48 |
'application': 'OceanClimateAgent',
|
|
|
|
|
|
|
49 |
'time_zone': 'gmt',
|
50 |
'units': units,
|
51 |
'format': 'json'
|
52 |
}
|
53 |
+
|
54 |
try:
|
55 |
+
print(f"π Fetching {product} data for station {station_id}")
|
56 |
+
print(f"π
Date range: {begin_str} to {end_str}")
|
57 |
+
|
|
|
|
|
|
|
|
|
58 |
response = requests.get(self.noaa_base_url, params=params, timeout=30)
|
59 |
+
|
60 |
+
if response.status_code != 200:
|
61 |
+
print(f"β HTTP Error {response.status_code}: {response.text}")
|
62 |
+
return None
|
63 |
+
|
64 |
+
data = response.json()
|
65 |
+
|
66 |
+
if 'data' in data and data['data']:
|
67 |
+
print(f"β
Successfully fetched {len(data['data'])} records for {product}")
|
68 |
+
return pd.DataFrame(data['data'])
|
69 |
+
elif 'error' in data:
|
70 |
+
print(f"β NOAA API error for {product}: {data['error']['message']}")
|
71 |
+
return None
|
72 |
else:
|
73 |
+
print(f"β No data returned for {product}")
|
74 |
+
return None
|
75 |
+
|
76 |
+
except requests.exceptions.Timeout:
|
77 |
+
print(f"β° Timeout fetching {product} data")
|
78 |
+
return None
|
79 |
+
except requests.exceptions.RequestException as e:
|
80 |
print(f"β Request failed for {product}: {str(e)}")
|
81 |
+
return None
|
82 |
+
except json.JSONDecodeError as e:
|
83 |
+
print(f"β JSON decode error for {product}: {str(e)}")
|
84 |
+
return None
|
85 |
+
except Exception as e:
|
86 |
+
print(f"β Unexpected error fetching {product}: {str(e)}")
|
87 |
+
return None
|
88 |
|
89 |
def get_comprehensive_station_data(self, station_name, days_back=30):
|
90 |
"""Get comprehensive data from a NOAA station"""
|
|
|
92 |
if not station_id:
|
93 |
return None, "Station not found"
|
94 |
|
95 |
+
# Ensure end_date is not in the future and allow for some buffer
|
96 |
+
end_date = datetime.utcnow() - timedelta(hours=2) # 2 hour buffer
|
|
|
97 |
start_date = end_date - timedelta(days=days_back)
|
|
|
98 |
|
99 |
+
print(f"π Fetching data for {station_name} (ID: {station_id})")
|
100 |
+
print(f"π
Date range: {start_date} to {end_date}")
|
101 |
+
|
102 |
+
# Priority order - start with most reliable products
|
103 |
+
products_to_fetch = [
|
104 |
+
('water_level', 'water_level'),
|
105 |
+
('water_temperature', 'water_temperature'),
|
106 |
+
('air_temperature', 'air_temperature'),
|
107 |
+
('wind', 'wind'),
|
108 |
+
('air_pressure', 'air_pressure')
|
109 |
+
]
|
110 |
|
111 |
all_data = {}
|
112 |
success_count = 0
|
113 |
|
114 |
+
for product_name, product_code in products_to_fetch:
|
115 |
+
print(f"π Attempting to fetch {product_name}...")
|
116 |
data = self.get_noaa_data(station_id, product_code, start_date, end_date)
|
117 |
+
|
118 |
if data is not None and not data.empty:
|
119 |
all_data[product_name] = data
|
120 |
success_count += 1
|
121 |
+
print(f"β
{product_name}: {len(data)} records")
|
122 |
+
else:
|
123 |
+
print(f"β {product_name}: No data available")
|
124 |
|
125 |
if success_count == 0:
|
126 |
+
return None, f"No data available for station {station_name} in the specified time period. This could be due to: station maintenance, data processing delays, or the station may not support the requested data types."
|
127 |
|
128 |
+
print(f"π Successfully retrieved {success_count}/{len(products_to_fetch)} data types")
|
129 |
return all_data, f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types"
|
130 |
|
131 |
def process_noaa_data(self, raw_data):
|
|
|
133 |
if not raw_data:
|
134 |
return None
|
135 |
|
136 |
+
base_df = None
|
137 |
+
|
138 |
+
# Start with water level data if available (most common)
|
139 |
if 'water_level' in raw_data:
|
140 |
df = raw_data['water_level'].copy()
|
141 |
df['datetime'] = pd.to_datetime(df['t'])
|
142 |
df['water_level'] = pd.to_numeric(df['v'], errors='coerce')
|
143 |
+
base_df = df[['datetime', 'water_level']].copy()
|
144 |
+
print(f"π Base dataset: water_level with {len(base_df)} records")
|
145 |
+
|
146 |
+
# If no water level, try other datasets
|
147 |
+
if base_df is None:
|
148 |
+
for product_name in ['water_temperature', 'air_temperature', 'wind', 'air_pressure']:
|
149 |
+
if product_name in raw_data:
|
150 |
+
df = raw_data[product_name].copy()
|
151 |
+
df['datetime'] = pd.to_datetime(df['t'])
|
152 |
+
if product_name == 'wind':
|
153 |
+
df['wind_speed'] = pd.to_numeric(df['s'], errors='coerce')
|
154 |
+
base_df = df[['datetime', 'wind_speed']].copy()
|
155 |
+
else:
|
156 |
+
column_name = product_name.replace('_temperature', '_temp')
|
157 |
+
df[column_name] = pd.to_numeric(df['v'], errors='coerce')
|
158 |
+
base_df = df[['datetime', column_name]].copy()
|
159 |
+
print(f"π Base dataset: {product_name} with {len(base_df)} records")
|
160 |
+
break
|
161 |
+
|
162 |
+
if base_df is None:
|
163 |
+
return None
|
164 |
+
|
165 |
+
# Add other parameters when available
|
166 |
+
if 'water_temperature' in raw_data and 'water_temp' not in base_df.columns:
|
167 |
+
temp_df = raw_data['water_temperature'].copy()
|
168 |
+
temp_df['datetime'] = pd.to_datetime(temp_df['t'])
|
169 |
+
temp_df['water_temp'] = pd.to_numeric(temp_df['v'], errors='coerce')
|
170 |
+
base_df = base_df.merge(temp_df[['datetime', 'water_temp']], on='datetime', how='outer')
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
if 'air_temperature' in raw_data and 'air_temp' not in base_df.columns:
|
173 |
+
air_temp_df = raw_data['air_temperature'].copy()
|
174 |
+
air_temp_df['datetime'] = pd.to_datetime(air_temp_df['t'])
|
175 |
+
air_temp_df['air_temp'] = pd.to_numeric(air_temp_df['v'], errors='coerce')
|
176 |
+
base_df = base_df.merge(air_temp_df[['datetime', 'air_temp']], on='datetime', how='outer')
|
177 |
+
|
178 |
+
if 'wind' in raw_data and 'wind_speed' not in base_df.columns:
|
179 |
+
wind_df = raw_data['wind'].copy()
|
180 |
+
wind_df['datetime'] = pd.to_datetime(wind_df['t'])
|
181 |
+
wind_df['wind_speed'] = pd.to_numeric(wind_df['s'], errors='coerce')
|
182 |
+
wind_df['wind_direction'] = pd.to_numeric(wind_df['d'], errors='coerce')
|
183 |
+
base_df = base_df.merge(wind_df[['datetime', 'wind_speed', 'wind_direction']], on='datetime', how='outer')
|
184 |
+
|
185 |
+
if 'air_pressure' in raw_data and 'air_pressure' not in base_df.columns:
|
186 |
+
pressure_df = raw_data['air_pressure'].copy()
|
187 |
+
pressure_df['datetime'] = pd.to_datetime(pressure_df['t'])
|
188 |
+
pressure_df['air_pressure'] = pd.to_numeric(pressure_df['v'], errors='coerce')
|
189 |
+
base_df = base_df.merge(pressure_df[['datetime', 'air_pressure']], on='datetime', how='outer')
|
190 |
+
|
191 |
+
# Sort by datetime and remove duplicates
|
192 |
+
base_df = base_df.sort_values('datetime').drop_duplicates(subset=['datetime'])
|
193 |
+
|
194 |
+
print(f"π Final processed dataset: {len(base_df)} records with {len(base_df.columns)-1} parameters")
|
195 |
+
return base_df
|
196 |
|
197 |
def detect_anomalies(self, data, column, window=24): # 24 hours for hourly data
|
198 |
"""Detect anomalies using rolling statistics"""
|
|
|
247 |
alerts.append(f"Significant water level change: {wl_trend*24:.1f}cm/day at {station_name}")
|
248 |
|
249 |
# Temperature analysis
|
250 |
+
for temp_col in ['water_temp', 'air_temp']:
|
251 |
+
if temp_col in data.columns:
|
252 |
+
temp_trend = self.calculate_trends(data, temp_col)
|
253 |
+
analysis[f'{temp_col}_trend'] = temp_trend * 24 # per day
|
254 |
+
|
255 |
+
if temp_trend * 24 > 0.5: # >0.5Β°C per day
|
256 |
+
alerts.append(f"Rapid {temp_col.replace('_', ' ')} rise: {temp_trend*24:.2f}Β°C/day at {station_name}")
|
257 |
|
258 |
# Anomaly detection
|
259 |
+
for col in ['water_level', 'water_temp', 'air_temp', 'wind_speed']:
|
260 |
if col in data.columns:
|
261 |
anomalies, z_scores = self.detect_anomalies(data, col)
|
262 |
anomaly_pct = (anomalies.sum() / len(data)) * 100
|
|
|
279 |
agent.anomaly_threshold = anomaly_sensitivity
|
280 |
|
281 |
if use_real_data:
|
282 |
+
print(f"π Starting real data analysis for {station_name}")
|
283 |
# Fetch real NOAA data
|
284 |
raw_data, status_msg = agent.get_comprehensive_station_data(station_name, days_back)
|
285 |
|
286 |
if raw_data is None:
|
287 |
+
error_msg = f"β Error fetching real data: {status_msg}"
|
288 |
+
print(error_msg)
|
289 |
+
return None, None, None, error_msg, "No alerts - data unavailable", None
|
290 |
|
291 |
# Process the data
|
292 |
data = agent.process_noaa_data(raw_data)
|
293 |
|
294 |
if data is None or data.empty:
|
295 |
+
error_msg = "β No processable data available after fetching from NOAA"
|
296 |
+
print(error_msg)
|
297 |
+
return None, None, None, error_msg, "No alerts - data unavailable", None
|
298 |
|
299 |
+
data_source = f"β
Real NOAA data from {station_name} ({status_msg})"
|
300 |
+
print(f"π― {data_source}")
|
301 |
|
302 |
else:
|
303 |
+
print("π§ Using synthetic demonstration data")
|
304 |
# Use synthetic data for demonstration
|
305 |
data = generate_synthetic_data(days_back)
|
306 |
+
data_source = f"π§ Synthetic demonstration data ({days_back} days)"
|
307 |
|
308 |
# Generate analysis and alerts
|
309 |
analysis, alerts = agent.generate_climate_analysis(data, station_name)
|
|
|
318 |
alerts_text = "\n".join([f"- {alert}" for alert in alerts])
|
319 |
|
320 |
# Create CSV for download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
csv_file_path = save_csv_temp(data)
|
322 |
+
|
323 |
+
print("β
Analysis completed successfully")
|
324 |
return fig1, fig2, fig3, analysis_text, alerts_text, csv_file_path
|
325 |
|
326 |
|
|
|
351 |
|
352 |
def create_main_dashboard(data, agent):
|
353 |
"""Create main dashboard visualization"""
|
354 |
+
available_plots = []
|
355 |
+
plot_data = []
|
356 |
+
|
357 |
+
# Check what data is available
|
358 |
+
if 'water_level' in data.columns and not data['water_level'].isna().all():
|
359 |
+
available_plots.append(('Water Level', 'water_level', 'blue'))
|
360 |
+
if 'water_temp' in data.columns and not data['water_temp'].isna().all():
|
361 |
+
available_plots.append(('Water Temperature', 'water_temp', 'red'))
|
362 |
+
if 'air_temp' in data.columns and not data['air_temp'].isna().all():
|
363 |
+
available_plots.append(('Air Temperature', 'air_temp', 'orange'))
|
364 |
+
if 'wind_speed' in data.columns and not data['wind_speed'].isna().all():
|
365 |
+
available_plots.append(('Wind Speed', 'wind_speed', 'green'))
|
366 |
+
if 'air_pressure' in data.columns and not data['air_pressure'].isna().all():
|
367 |
+
available_plots.append(('Air Pressure', 'air_pressure', 'purple'))
|
368 |
+
|
369 |
+
if not available_plots:
|
370 |
+
fig = go.Figure()
|
371 |
+
fig.add_annotation(text="No data available for visualization",
|
372 |
+
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
373 |
+
return fig
|
374 |
+
|
375 |
+
# Create subplots based on available data
|
376 |
+
n_plots = len(available_plots)
|
377 |
+
rows = (n_plots + 1) // 2 # Ceiling division
|
378 |
+
cols = 2 if n_plots > 1 else 1
|
379 |
+
|
380 |
fig = make_subplots(
|
381 |
+
rows=rows, cols=cols,
|
382 |
+
subplot_titles=[plot[0] for plot in available_plots],
|
383 |
vertical_spacing=0.1
|
384 |
)
|
385 |
|
386 |
+
for i, (title, column, color) in enumerate(available_plots):
|
387 |
+
row = (i // 2) + 1
|
388 |
+
col = (i % 2) + 1
|
389 |
+
|
390 |
+
# Add main data line
|
391 |
fig.add_trace(
|
392 |
+
go.Scatter(x=data['datetime'], y=data[column],
|
393 |
+
name=title, line=dict(color=color)),
|
394 |
+
row=row, col=col
|
395 |
)
|
396 |
|
397 |
+
# Add anomalies if applicable
|
398 |
+
anomalies, _ = agent.detect_anomalies(data, column)
|
399 |
if anomalies.any():
|
400 |
anomaly_data = data[anomalies]
|
401 |
fig.add_trace(
|
402 |
+
go.Scatter(x=anomaly_data['datetime'], y=anomaly_data[column],
|
403 |
+
mode='markers', name=f'{title} Anomalies',
|
404 |
marker=dict(color='red', size=6)),
|
405 |
+
row=row, col=col
|
406 |
)
|
407 |
|
408 |
+
fig.update_layout(height=300*rows, showlegend=False, title_text="Ocean and Atmospheric Data Dashboard")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
409 |
return fig
|
410 |
|
411 |
def create_anomaly_plots(data, agent):
|
412 |
"""Create anomaly detection plots"""
|
413 |
+
available_cols = [col for col in ['water_level', 'water_temp', 'air_temp', 'wind_speed']
|
414 |
+
if col in data.columns and not data[col].isna().all()]
|
415 |
+
|
416 |
+
if len(available_cols) == 0:
|
417 |
+
fig = go.Figure()
|
418 |
+
fig.add_annotation(text="No data available for anomaly detection",
|
419 |
+
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
420 |
+
return fig
|
421 |
+
|
422 |
+
n_plots = min(len(available_cols), 2) # Maximum 2 plots
|
423 |
+
|
424 |
fig = make_subplots(
|
425 |
+
rows=1, cols=n_plots,
|
426 |
+
subplot_titles=[f'{col.replace("_", " ").title()} Anomalies' for col in available_cols[:n_plots]]
|
427 |
)
|
428 |
|
429 |
+
colors = ['blue', 'red', 'green', 'purple']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
+
for i, col in enumerate(available_cols[:n_plots]):
|
432 |
+
_, z_scores = agent.detect_anomalies(data, col)
|
|
|
433 |
fig.add_trace(
|
434 |
go.Scatter(x=data['datetime'], y=z_scores,
|
435 |
+
mode='lines', name=f'{col} Z-Score',
|
436 |
+
line=dict(color=colors[i % len(colors)])),
|
437 |
+
row=1, col=i+1
|
438 |
)
|
439 |
+
fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=i+1)
|
440 |
|
441 |
fig.update_layout(height=400, showlegend=False, title_text="Anomaly Detection Analysis")
|
442 |
return fig
|
443 |
|
444 |
def create_correlation_plot(data):
|
445 |
"""Create correlation heatmap"""
|
446 |
+
numeric_cols = [col for col in ['water_level', 'water_temp', 'air_temp', 'wind_speed', 'air_pressure']
|
447 |
+
if col in data.columns and not data[col].isna().all()]
|
448 |
|
449 |
if len(numeric_cols) < 2:
|
450 |
# Return empty plot if insufficient data
|
|
|
466 |
"""Format analysis results for display"""
|
467 |
result = f"### {data_source}\n\n**Key Trends:**\n"
|
468 |
|
469 |
+
if not analysis:
|
470 |
+
result += "- No analysis data available\n"
|
471 |
+
return result
|
472 |
+
|
473 |
for key, value in analysis.items():
|
474 |
if 'trend' in key:
|
475 |
param = key.replace('_trend', '').replace('_', ' ').title()
|
|
|
481 |
|
482 |
return result
|
483 |
|
484 |
+
def save_csv_temp(data):
|
485 |
+
"""Save data to temporary CSV file"""
|
486 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8')
|
487 |
+
data.to_csv(tmp.name, index=False)
|
488 |
+
tmp.close()
|
489 |
+
return tmp.name
|
490 |
+
|
491 |
# Create Gradio interface
|
492 |
with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.themes.Ocean()) as demo:
|
493 |
gr.Markdown("""
|
|
|
496 |
|
497 |
This enhanced AI agent can fetch real ocean data from NOAA stations or use synthetic data for demonstration.
|
498 |
Monitor water levels, temperature, currents, and detect climate anomalies at major coastal locations.
|
499 |
+
|
500 |
+
**Note:** NOAA stations may not have all data types available. The system will use whatever data is accessible.
|
501 |
""")
|
502 |
|
503 |
with gr.Row():
|
|
|
509 |
label="NOAA Station Location"
|
510 |
)
|
511 |
days_back = gr.Slider(
|
512 |
+
minimum=1,
|
513 |
+
maximum=30,
|
514 |
+
value=7,
|
515 |
step=1,
|
516 |
+
label="Days of Historical Data",
|
517 |
+
info="Shorter periods are more reliable"
|
518 |
)
|
519 |
anomaly_sensitivity = gr.Slider(
|
520 |
minimum=1.0,
|
|
|
563 |
fn=analyze_real_ocean_data,
|
564 |
inputs=[
|
565 |
gr.Text(value="San Francisco, CA", visible=False),
|
566 |
+
gr.Number(value=7, visible=False),
|
567 |
gr.Number(value=2.0, visible=False),
|
568 |
gr.Checkbox(value=False, visible=False) # Start with synthetic data
|
569 |
],
|