import gradio as gr import pandas as pd import numpy as np import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import requests from datetime import datetime, timedelta import warnings import json warnings.filterwarnings('ignore') class EnhancedOceanClimateAgent: def __init__(self): self.anomaly_threshold = 2.0 self.critical_temp_change = 1.5 # API endpoints* Running on local URL: http://0.0.0.0:7860, with SSR ⚡ (experimental, to disable set `ssr_mode=False` in `launch()`) * To create a public link, set `share=True` in `launch()`. Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/gradio/queueing.py", line 626, in process_events response = await route_utils.call_process_api( File "/usr/local/lib/python3.10/site-packages/gradio/route_utils.py", line 322, in call_process_api output = await app.get_blocks().process_api( File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 2230, in process_api data = await self.postprocess_data(block_fn, result["prediction"], state) File "/usr/local/lib/python3.10/site-packages/gradio/blocks.py", line 2012, in postprocess_data prediction_value = block.postprocess(prediction_value) File "/usr/local/lib/python3.10/site-packages/gradio/components/file.py", line 227, in postprocess size=Path(value).stat().st_size, File "/usr/local/lib/python3.10/pathlib.py", line 1097, in stat return self._accessor.stat(self, follow_symlinks=follow_symlinks) self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter" self.noaa_stations_url = "https://api.tidesandcurrents.noaa.gov/mdapi/prod/webapi/stations.json" # Popular NOAA stations for different regions self.default_stations = { "San Francisco, CA": "9414290", "New York, NY": "8518750", "Miami, FL": "8723214", "Seattle, WA": "9447130", "Boston, MA": "8443970", "Los Angeles, CA": "9410660", "Galveston, TX": "8771450", "Charleston, SC": "8665530" } def get_noaa_data(self, station_id, product, start_date, end_date, units="metric"): """Fetch data from NOAA API""" params = { 'product': product, 'application': 'OceanClimateAgent', 'begin_date': start_date.strftime('%Y%m%d'), 'end_date': end_date.strftime('%Y%m%d'), 'station': station_id, 'time_zone': 'gmt', 'units': units, 'format': 'json' } try: response = requests.get(self.noaa_base_url, params=params, timeout=30) if response.status_code == 200: data = response.json() if 'data' in data: return pd.DataFrame(data['data']) else: print(f"No data returned for {product}: {data.get('error', {}).get('message', 'Unknown error')}") return None else: print(f"API error {response.status_code} for {product}") return None except Exception as e: print(f"Error fetching {product}: {str(e)}") return None def get_comprehensive_station_data(self, station_name, days_back=30): """Get comprehensive data from a NOAA station""" station_id = self.default_stations.get(station_name) if not station_id: return None, "Station not found" end_date = datetime.now() start_date = end_date - timedelta(days=days_back) # Available NOAA products products_to_fetch = { 'water_level': 'water_level', 'water_temperature': 'water_temperature', 'air_temperature': 'air_temperature', 'wind': 'wind', 'air_pressure': 'air_pressure', 'salinity': 'salinity', 'currents': 'currents' } all_data = {} success_count = 0 for product_name, product_code in products_to_fetch.items(): data = self.get_noaa_data(station_id, product_code, start_date, end_date) if data is not None and not data.empty: all_data[product_name] = data success_count += 1 if success_count == 0: return None, "No data available for this station and time period" return all_data, f"Successfully retrieved {success_count}/{len(products_to_fetch)} data types" def process_noaa_data(self, raw_data): """Process and combine NOAA data for analysis""" if not raw_data: return None # Process water level data (primary dataset) if 'water_level' in raw_data: df = raw_data['water_level'].copy() df['datetime'] = pd.to_datetime(df['t']) df['water_level'] = pd.to_numeric(df['v'], errors='coerce') # Add other parameters when available if 'water_temperature' in raw_data: temp_df = raw_data['water_temperature'].copy() temp_df['datetime'] = pd.to_datetime(temp_df['t']) temp_df['water_temp'] = pd.to_numeric(temp_df['v'], errors='coerce') df = df.merge(temp_df[['datetime', 'water_temp']], on='datetime', how='left') if 'air_temperature' in raw_data: air_temp_df = raw_data['air_temperature'].copy() air_temp_df['datetime'] = pd.to_datetime(air_temp_df['t']) air_temp_df['air_temp'] = pd.to_numeric(air_temp_df['v'], errors='coerce') df = df.merge(air_temp_df[['datetime', 'air_temp']], on='datetime', how='left') if 'wind' in raw_data: wind_df = raw_data['wind'].copy() wind_df['datetime'] = pd.to_datetime(wind_df['t']) wind_df['wind_speed'] = pd.to_numeric(wind_df['s'], errors='coerce') wind_df['wind_direction'] = pd.to_numeric(wind_df['d'], errors='coerce') df = df.merge(wind_df[['datetime', 'wind_speed', 'wind_direction']], on='datetime', how='left') if 'air_pressure' in raw_data: pressure_df = raw_data['air_pressure'].copy() pressure_df['datetime'] = pd.to_datetime(pressure_df['t']) pressure_df['air_pressure'] = pd.to_numeric(pressure_df['v'], errors='coerce') df = df.merge(pressure_df[['datetime', 'air_pressure']], on='datetime', how='left') if 'salinity' in raw_data: salinity_df = raw_data['salinity'].copy() salinity_df['datetime'] = pd.to_datetime(salinity_df['t']) salinity_df['salinity'] = pd.to_numeric(salinity_df['v'], errors='coerce') df = df.merge(salinity_df[['datetime', 'salinity']], on='datetime', how='left') return df return None def detect_anomalies(self, data, column, window=24): # 24 hours for hourly data """Detect anomalies using rolling statistics""" if column not in data.columns or data[column].isna().all(): return pd.Series([False] * len(data)), pd.Series([0] * len(data)) rolling_mean = data[column].rolling(window=window, center=True, min_periods=1).mean() rolling_std = data[column].rolling(window=window, center=True, min_periods=1).std() # Avoid division by zero rolling_std = rolling_std.fillna(1) rolling_std = rolling_std.replace(0, 1) z_scores = np.abs((data[column] - rolling_mean) / rolling_std) anomalies = z_scores > self.anomaly_threshold return anomalies, z_scores def calculate_trends(self, data, column, hours=168): # 7 days """Calculate trend over specified period""" if column not in data.columns or data[column].isna().all(): return 0 recent_data = data.tail(hours) if len(recent_data) < 2: return 0 x = np.arange(len(recent_data)) y = recent_data[column].dropna() if len(y) < 2: return 0 x = x[:len(y)] slope = np.polyfit(x, y, 1)[0] if len(x) > 1 else 0 return slope def generate_climate_analysis(self, data, station_name): """Generate comprehensive climate analysis""" if data is None or data.empty: return {}, [] analysis = {} alerts = [] # Water level analysis if 'water_level' in data.columns: wl_trend = self.calculate_trends(data, 'water_level') analysis['water_level_trend'] = wl_trend * 24 # per day if abs(wl_trend * 24) > 5: # >5cm per day change alerts.append(f"Significant water level change: {wl_trend*24:.1f}cm/day at {station_name}") # Temperature analysis if 'water_temp' in data.columns: temp_trend = self.calculate_trends(data, 'water_temp') analysis['water_temp_trend'] = temp_trend * 24 # per day if temp_trend * 24 > 0.5: # >0.5°C per day alerts.append(f"Rapid water temperature rise: {temp_trend*24:.2f}°C/day at {station_name}") # Anomaly detection for col in ['water_level', 'water_temp', 'wind_speed']: if col in data.columns: anomalies, z_scores = self.detect_anomalies(data, col) anomaly_pct = (anomalies.sum() / len(data)) * 100 analysis[f'{col}_anomaly_frequency'] = anomaly_pct if anomaly_pct > 10: alerts.append(f"High {col.replace('_', ' ')} anomaly frequency: {anomaly_pct:.1f}% at {station_name}") if not alerts: alerts.append(f"✅ No significant anomalies detected at {station_name}") return analysis, alerts # Initialize the enhanced agent agent = EnhancedOceanClimateAgent() def analyze_real_ocean_data(station_name, days_back, anomaly_sensitivity, use_real_data): """Main analysis function with real NOAA data""" agent.anomaly_threshold = anomaly_sensitivity if use_real_data: # Fetch real NOAA data raw_data, status_msg = agent.get_comprehensive_station_data(station_name, days_back) if raw_data is None: return None, None, None, f"Error: {status_msg}", "No alerts - data unavailable", None # Process the data data = agent.process_noaa_data(raw_data) if data is None or data.empty: return None, None, None, "No processable data available", "No alerts - data unavailable", None data_source = f"Real NOAA data from {station_name} ({status_msg})" else: # Use synthetic data for demonstration data = generate_synthetic_data(days_back) data_source = f"Synthetic demonstration data ({days_back} days)" # Generate analysis and alerts analysis, alerts = agent.generate_climate_analysis(data, station_name) # Create visualizations fig1 = create_main_dashboard(data, agent) fig2 = create_anomaly_plots(data, agent) fig3 = create_correlation_plot(data) # Format analysis text analysis_text = format_analysis_results(analysis, data_source) alerts_text = "\n".join([f"- {alert}" for alert in alerts]) # Create CSV for download import tempfile #Create CSV def save_csv_temp(data): tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8') data.to_csv(tmp.name, index=False) tmp.close() return tmp.name csv_file_path = save_csv_temp(data) return fig1, fig2, fig3, analysis_text, alerts_text, csv_file_path def generate_synthetic_data(days): """Generate synthetic data for demonstration""" dates = pd.date_range(start=datetime.now() - timedelta(days=days), periods=days*24, freq='H') # Synthetic water level with tidal patterns tidal_pattern = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 12.42) # M2 tide water_level = 100 + tidal_pattern + np.random.normal(0, 0.3, len(dates)) # Water temperature with daily cycle daily_temp_cycle = 2 * np.sin(2 * np.pi * np.arange(len(dates)) / 24) water_temp = 15 + daily_temp_cycle + np.random.normal(0, 0.5, len(dates)) # Wind patterns wind_speed = 5 + 3 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*3)) + np.random.normal(0, 1, len(dates)) wind_direction = 180 + 45 * np.sin(2 * np.pi * np.arange(len(dates)) / (24*2)) + np.random.normal(0, 20, len(dates)) return pd.DataFrame({ 'datetime': dates, 'water_level': water_level, 'water_temp': water_temp, 'wind_speed': np.maximum(0, wind_speed), 'wind_direction': wind_direction % 360, 'air_pressure': 1013 + np.random.normal(0, 10, len(dates)) }) def create_main_dashboard(data, agent): """Create main dashboard visualization""" fig = make_subplots( rows=2, cols=2, subplot_titles=('Water Level', 'Water Temperature', 'Wind Speed', 'Air Pressure'), vertical_spacing=0.1 ) # Water Level if 'water_level' in data.columns: fig.add_trace( go.Scatter(x=data['datetime'], y=data['water_level'], name='Water Level', line=dict(color='blue')), row=1, col=1 ) # Add anomalies anomalies, _ = agent.detect_anomalies(data, 'water_level') if anomalies.any(): anomaly_data = data[anomalies] fig.add_trace( go.Scatter(x=anomaly_data['datetime'], y=anomaly_data['water_level'], mode='markers', name='Anomalies', marker=dict(color='red', size=6)), row=1, col=1 ) # Water Temperature if 'water_temp' in data.columns: fig.add_trace( go.Scatter(x=data['datetime'], y=data['water_temp'], name='Water Temp', line=dict(color='red')), row=1, col=2 ) # Wind Speed if 'wind_speed' in data.columns: fig.add_trace( go.Scatter(x=data['datetime'], y=data['wind_speed'], name='Wind Speed', line=dict(color='green')), row=2, col=1 ) # Air Pressure if 'air_pressure' in data.columns: fig.add_trace( go.Scatter(x=data['datetime'], y=data['air_pressure'], name='Air Pressure', line=dict(color='purple')), row=2, col=2 ) fig.update_layout(height=600, showlegend=False, title_text="Ocean and Atmospheric Data Dashboard") return fig def create_anomaly_plots(data, agent): """Create anomaly detection plots""" fig = make_subplots( rows=1, cols=2, subplot_titles=('Water Level Anomalies', 'Temperature Anomalies') ) # Water level anomalies if 'water_level' in data.columns: _, z_scores = agent.detect_anomalies(data, 'water_level') fig.add_trace( go.Scatter(x=data['datetime'], y=z_scores, mode='lines', name='Water Level Z-Score'), row=1, col=1 ) fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=1) # Temperature anomalies if 'water_temp' in data.columns: _, z_scores = agent.detect_anomalies(data, 'water_temp') fig.add_trace( go.Scatter(x=data['datetime'], y=z_scores, mode='lines', name='Temperature Z-Score', line=dict(color='red')), row=1, col=2 ) fig.add_hline(y=agent.anomaly_threshold, line_dash="dash", line_color="red", row=1, col=2) fig.update_layout(height=400, showlegend=False, title_text="Anomaly Detection Analysis") return fig def create_correlation_plot(data): """Create correlation heatmap""" numeric_cols = [col for col in ['water_level', 'water_temp', 'wind_speed', 'air_pressure'] if col in data.columns] if len(numeric_cols) < 2: # Return empty plot if insufficient data fig = go.Figure() fig.add_annotation(text="Insufficient data for correlation analysis", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False) return fig corr_matrix = data[numeric_cols].corr() fig = px.imshow(corr_matrix, labels=dict(color="Correlation"), color_continuous_scale='RdBu_r', aspect="auto", title="Parameter Correlations") return fig def format_analysis_results(analysis, data_source): """Format analysis results for display""" result = f"### {data_source}\n\n**Key Trends:**\n" for key, value in analysis.items(): if 'trend' in key: param = key.replace('_trend', '').replace('_', ' ').title() unit = 'cm/day' if 'water_level' in key else '°C/day' if 'temp' in key else 'units/day' result += f"- {param}: {value:.3f} {unit}\n" elif 'anomaly_frequency' in key: param = key.replace('_anomaly_frequency', '').replace('_', ' ').title() result += f"- {param} anomalies: {value:.1f}%\n" return result # Create Gradio interface with gr.Blocks(title="Enhanced Ocean Climate Monitoring AI Agent", theme=gr.themes.Ocean()) as demo: gr.Markdown(""" # Enhanced Ocean Climate Monitoring AI Agent ### Real-time Analysis with NOAA Data Integration This enhanced AI agent can fetch real ocean data from NOAA stations or use synthetic data for demonstration. Monitor water levels, temperature, currents, and detect climate anomalies at major coastal locations. """) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Configuration") station_name = gr.Dropdown( choices=list(agent.default_stations.keys()), value="San Francisco, CA", label="NOAA Station Location" ) days_back = gr.Slider( minimum=7, maximum=90, value=30, step=1, label="Days of Historical Data" ) anomaly_sensitivity = gr.Slider( minimum=1.0, maximum=3.0, value=2.0, step=0.1, label="Anomaly Detection Sensitivity" ) use_real_data = gr.Checkbox( label="Use Real NOAA Data", value=True, info="Uncheck to use synthetic data" ) analyze_btn = gr.Button("Analyze Ocean Data", variant="primary") with gr.Column(scale=2): gr.Markdown("### Climate Alerts") alerts_output = gr.Markdown() with gr.Row(): analysis_output = gr.Markdown() with gr.Tab("Main Dashboard"): dashboard_plot = gr.Plot() with gr.Tab("Anomaly Detection"): anomaly_plot = gr.Plot() with gr.Tab("Correlations"): correlation_plot = gr.Plot() with gr.Tab("Data Export"): gr.Markdown("### Download Analyzed Data") csv_output = gr.File(label="Download CSV Data") gr.Markdown("*Note: Real NOAA data usage is subject to their terms of service*") # Set up the analysis function analyze_btn.click( fn=analyze_real_ocean_data, inputs=[station_name, days_back, anomaly_sensitivity, use_real_data], outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output] ) # Auto-run on startup with synthetic data demo.load( fn=analyze_real_ocean_data, inputs=[ gr.Text(value="San Francisco, CA", visible=False), gr.Number(value=30, visible=False), gr.Number(value=2.0, visible=False), gr.Checkbox(value=False, visible=False) # Start with synthetic data ], outputs=[dashboard_plot, anomaly_plot, correlation_plot, analysis_output, alerts_output, csv_output] ) if __name__ == "__main__": demo.launch()