File size: 26,709 Bytes
abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 63cc071 abad8a2 63cc071 abad8a2 63cc071 abad8a2 63cc071 abad8a2 63cc071 abad8a2 63cc071 abad8a2 63cc071 abad8a2 63cc071 abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a 63cc071 abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a 63cc071 abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 63cc071 abad8a2 63cc071 f66fd7a 63cc071 abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 f66fd7a abad8a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
import gradio as gr
import requests
import json
import pandas as pd
from datetime import datetime, timedelta
import re
from typing import List, Dict, Tuple
import xml.etree.ElementTree as ET
from collections import Counter
import plotly.express as px
import plotly.graph_objects as go
from transformers import pipeline
import numpy as np
class VeterinaryLiteratureMiner:
def __init__(self):
# Initialize NLP pipelines
try:
self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
self.classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
except Exception as e:
print(f"Warning: Could not load transformers models: {e}")
self.summarizer = None
self.classifier = None
# Veterinary research categories for classification
self.veterinary_categories = [
"oncology", "cardiology", "dermatology", "neurology", "orthopedics",
"infectious diseases", "parasitology", "pharmacology", "toxicology",
"surgery", "anesthesia", "emergency medicine", "internal medicine",
"pathology", "radiology", "nutrition", "behavior", "reproduction",
"public health", "zoonoses", "immunology", "genetics", "epidemiology"
]
# Animal species categories
self.animal_species = [
"canine", "dog", "dogs", "feline", "cat", "cats", "equine", "horse", "horses",
"bovine", "cattle", "cow", "cows", "porcine", "pig", "pigs", "swine",
"ovine", "sheep", "caprine", "goat", "goats", "avian", "bird", "birds",
"poultry", "chicken", "chickens", "rabbit", "rabbits", "ferret", "ferrets",
"reptile", "reptiles", "fish", "aquatic", "wildlife", "zoo", "exotic",
"laboratory animals", "mouse", "mice", "rat", "rats"
]
# Veterinary specialties and procedures
self.vet_procedures = [
"vaccination", "spay", "neuter", "castration", "ovariohysterectomy",
"amputation", "biopsy", "endoscopy", "laparoscopy", "arthroscopy",
"radiography", "ultrasound", "CT", "MRI", "chemotherapy", "radiation",
"physical therapy", "rehabilitation", "dental", "ophthalmology"
]
# Common veterinary conditions
self.vet_conditions = [
"diabetes", "epilepsy", "heart disease", "kidney disease", "liver disease",
"arthritis", "hip dysplasia", "allergies", "skin disease", "cancer",
"tumor", "infection", "parasite", "heartworm", "flea", "tick",
"obesity", "dental disease", "cataracts", "glaucoma", "IBD"
]
def search_veterinary_literature(self, query: str, max_results: int = 50, database: str = "pubmed") -> List[Dict]:
"""Search veterinary literature across multiple databases"""
if database == "pubmed":
return self._search_pubmed(query, max_results)
else:
# Future: Could add other veterinary databases here
return self._search_pubmed(query, max_results)
def _search_pubmed(self, query: str, max_results: int) -> List[Dict]:
"""Search PubMed for veterinary papers"""
try:
print(f"Searching PubMed with query: {query}") # Debug print
# Enhance query with veterinary terms
enhanced_query = f"({query}) AND (veterinary OR animal OR pet OR livestock OR zoo OR wildlife)"
print(f"Enhanced query: {enhanced_query}") # Debug print
# Search PubMed
search_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
search_params = {
"db": "pubmed",
"term": enhanced_query,
"retmax": max_results,
"retmode": "json",
"sort": "relevance"
}
print("Making search request...") # Debug print
search_response = requests.get(search_url, params=search_params, timeout=30)
print(f"Search response status: {search_response.status_code}") # Debug print
if search_response.status_code != 200:
return [{"error": f"PubMed search failed with status {search_response.status_code}"}]
search_data = search_response.json()
print(f"Search data received: {search_data.get('esearchresult', {}).get('count', 0)} results") # Debug print
if "esearchresult" not in search_data:
return [{"error": "Invalid response from PubMed"}]
if not search_data["esearchresult"].get("idlist"):
return [{"error": "No papers found matching your query"}]
# Get detailed information
ids = search_data["esearchresult"]["idlist"]
print(f"Fetching details for {len(ids)} papers...") # Debug print
fetch_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
fetch_params = {
"db": "pubmed",
"id": ",".join(ids),
"retmode": "xml"
}
fetch_response = requests.get(fetch_url, params=fetch_params, timeout=60)
print(f"Fetch response status: {fetch_response.status_code}") # Debug print
if fetch_response.status_code != 200:
return [{"error": f"Failed to fetch paper details: {fetch_response.status_code}"}]
# Parse XML response
papers = self._parse_pubmed_xml(fetch_response.text)
print(f"Parsed {len(papers)} papers successfully") # Debug print
return papers
except requests.exceptions.Timeout:
return [{"error": "Request timed out. Please try again with fewer results."}]
except requests.exceptions.ConnectionError:
return [{"error": "Connection error. Please check your internet connection."}]
except Exception as e:
print(f"Error in _search_pubmed: {str(e)}") # Debug print
return [{"error": f"Search failed: {str(e)}"}]
def _parse_pubmed_xml(self, xml_content: str) -> List[Dict]:
"""Parse PubMed XML response"""
papers = []
try:
root = ET.fromstring(xml_content)
for article in root.findall(".//PubmedArticle"):
paper = {}
# Extract basic info
medline = article.find(".//MedlineCitation")
if medline is not None:
pmid = medline.find(".//PMID")
paper["pmid"] = pmid.text if pmid is not None else "N/A"
# Extract title
title = article.find(".//ArticleTitle")
paper["title"] = title.text if title is not None else "N/A"
# Extract abstract
abstract_elem = article.find(".//Abstract/AbstractText")
paper["abstract"] = abstract_elem.text if abstract_elem is not None else "N/A"
# Extract authors
authors = []
for author in article.findall(".//Author"):
fname = author.find(".//ForeName")
lname = author.find(".//LastName")
if fname is not None and lname is not None:
authors.append(f"{fname.text} {lname.text}")
paper["authors"] = ", ".join(authors[:3]) + ("..." if len(authors) > 3 else "")
# Extract journal and date
journal = article.find(".//Journal/Title")
paper["journal"] = journal.text if journal is not None else "N/A"
pub_date = article.find(".//PubDate/Year")
paper["year"] = pub_date.text if pub_date is not None else "N/A"
papers.append(paper)
except Exception as e:
return [{"error": f"XML parsing failed: {str(e)}"}]
return papers
def analyze_veterinary_papers(self, papers: List[Dict]) -> Dict:
"""Analyze the retrieved veterinary papers for insights"""
if not papers or papers[0].get("error"):
return {"error": "No papers to analyze"}
analysis = {
"total_papers": len(papers),
"year_distribution": {},
"animal_species": {},
"veterinary_specialties": {},
"common_conditions": {},
"procedures_mentioned": {},
"drug_mentions": [],
"journal_distribution": {},
"research_trends": {}
}
# Keywords for different categories
specialty_keywords = {
"oncology": ["cancer", "tumor", "oncology", "chemotherapy", "radiation"],
"cardiology": ["heart", "cardiac", "cardiology", "arrhythmia", "murmur"],
"dermatology": ["skin", "dermatology", "allergy", "dermatitis", "eczema"],
"neurology": ["brain", "neurological", "seizure", "epilepsy", "paralysis"],
"orthopedics": ["bone", "joint", "fracture", "orthopedic", "lameness"],
"infectious_diseases": ["infection", "bacteria", "virus", "antibiotic", "pathogen"],
"surgery": ["surgical", "surgery", "operative", "laparoscopy", "endoscopy"],
"internal_medicine": ["diabetes", "kidney", "liver", "endocrine", "metabolic"]
}
# Analyze each paper
for paper in papers:
# Year distribution
year = paper.get("year", "Unknown")
analysis["year_distribution"][year] = analysis["year_distribution"].get(year, 0) + 1
# Journal distribution
journal = paper.get("journal", "Unknown")
analysis["journal_distribution"][journal] = analysis["journal_distribution"].get(journal, 0) + 1
# Analyze abstract and title
abstract = paper.get("abstract", "").lower()
title = paper.get("title", "").lower()
full_text = f"{title} {abstract}"
# Animal species detection
for species in self.animal_species:
if species in full_text:
species_key = species.replace(" ", "_")
analysis["animal_species"][species_key] = analysis["animal_species"].get(species_key, 0) + 1
# Veterinary specialty detection
for specialty, keywords in specialty_keywords.items():
for keyword in keywords:
if keyword in full_text:
analysis["veterinary_specialties"][specialty] = analysis["veterinary_specialties"].get(specialty, 0) + 1
break
# Common conditions detection
for condition in self.vet_conditions:
if condition in full_text:
analysis["common_conditions"][condition] = analysis["common_conditions"].get(condition, 0) + 1
# Procedures detection
for procedure in self.vet_procedures:
if procedure in full_text:
analysis["procedures_mentioned"][procedure] = analysis["procedures_mentioned"].get(procedure, 0) + 1
# Extract drug mentions (veterinary drugs and general pharmaceuticals)
drugs = re.findall(r'\b[A-Z][a-z]*(?:mab|nib|ine|ole|cin|tin|zole|pril|sartan)\b', paper.get("abstract", ""))
# Add common veterinary drugs
vet_drugs = ["prednisolone", "dexamethasone", "amoxicillin", "cephalexin", "enrofloxacin",
"tramadol", "gabapentin", "furosemide", "enalapril", "pimobendan"]
for drug in vet_drugs:
if drug in full_text:
drugs.append(drug.title())
analysis["drug_mentions"].extend(drugs)
# Classify research category if classifier is available
if self.classifier and abstract != "n/a":
try:
result = self.classifier(abstract[:512], self.veterinary_categories)
top_category = result["labels"][0]
analysis["research_trends"][top_category] = analysis["research_trends"].get(top_category, 0) + 1
except Exception:
pass
# Process drug mentions
drug_counter = Counter(analysis["drug_mentions"])
analysis["drug_mentions"] = dict(drug_counter.most_common(15))
return analysis
def generate_veterinary_summary(self, papers: List[Dict], analysis: Dict) -> str:
"""Generate a comprehensive summary of veterinary literature findings"""
if not papers or papers[0].get("error"):
return "No papers found or error in retrieval."
summary = f"""
# Veterinary Literature Mining Summary
## Overview
- **Total Papers Found**: {analysis['total_papers']}
- **Search Date**: {datetime.now().strftime('%Y-%m-%d')}
## Key Insights
### Most Studied Animal Species
"""
# Top animal species
if analysis["animal_species"]:
top_species = sorted(analysis["animal_species"].items(), key=lambda x: x[1], reverse=True)[:8]
for species, count in top_species:
formatted_species = species.replace("_", " ").title()
summary += f"- **{formatted_species}**: {count} papers\n"
summary += "\n### Veterinary Specialties Focus\n"
# Veterinary specialties
if analysis["veterinary_specialties"]:
top_specialties = sorted(analysis["veterinary_specialties"].items(), key=lambda x: x[1], reverse=True)[:6]
for specialty, count in top_specialties:
formatted_specialty = specialty.replace("_", " ").title()
summary += f"- **{formatted_specialty}**: {count} papers\n"
summary += "\n### Common Conditions Studied\n"
# Common conditions
if analysis["common_conditions"]:
top_conditions = sorted(analysis["common_conditions"].items(), key=lambda x: x[1], reverse=True)[:8]
for condition, count in top_conditions:
summary += f"- **{condition.title()}**: {count} papers\n"
summary += "\n### Frequently Mentioned Treatments/Drugs\n"
# Drug mentions
if analysis["drug_mentions"]:
for drug, count in list(analysis["drug_mentions"].items())[:8]:
summary += f"- **{drug}**: {count} mentions\n"
summary += "\n### Top Veterinary Journals\n"
# Journal distribution
if analysis["journal_distribution"]:
top_journals = sorted(analysis["journal_distribution"].items(), key=lambda x: x[1], reverse=True)[:5]
for journal, count in top_journals:
summary += f"- **{journal}**: {count} papers\n"
summary += "\n### Recent Research Highlights\n"
# Recent papers (last 3 years)
current_year = datetime.now().year
recent_papers = [p for p in papers if p.get("year", "").isdigit() and int(p["year"]) >= current_year - 3]
for paper in recent_papers[:4]:
summary += f"- **{paper.get('title', 'N/A')}** ({paper.get('year', 'N/A')})\n"
summary += f" *{paper.get('journal', 'N/A')}*\n\n"
return summary
def create_veterinary_visualizations(self, analysis: Dict):
"""Create visualization plots for veterinary data"""
plots = {}
# Year distribution
if analysis["year_distribution"]:
years = [y for y in analysis["year_distribution"].keys() if y.isdigit()]
counts = [analysis["year_distribution"][y] for y in years]
fig_year = px.line(
x=years, y=counts,
title="Veterinary Research Publications Over Time",
labels={"x": "Year", "y": "Number of Papers"},
markers=True
)
fig_year.update_layout(showlegend=False)
plots["year_dist"] = fig_year
# Animal species
if analysis["animal_species"]:
species = list(analysis["animal_species"].keys())[:12]
species_counts = [analysis["animal_species"][s] for s in species]
formatted_species = [s.replace("_", " ").title() for s in species]
fig_species = px.bar(
x=species_counts, y=formatted_species,
orientation='h',
title="Most Studied Animal Species",
labels={"x": "Number of Papers", "y": "Species"}
)
plots["animal_species"] = fig_species
# Veterinary specialties
if analysis["veterinary_specialties"]:
specialties = list(analysis["veterinary_specialties"].keys())
spec_counts = list(analysis["veterinary_specialties"].values())
formatted_specialties = [s.replace("_", " ").title() for s in specialties]
fig_specialties = px.pie(
values=spec_counts, names=formatted_specialties,
title="Veterinary Specialty Distribution"
)
plots["specialties"] = fig_specialties
# Common conditions
if analysis["common_conditions"]:
conditions = list(analysis["common_conditions"].keys())[:10]
condition_counts = [analysis["common_conditions"][c] for c in conditions]
fig_conditions = px.bar(
x=[c.title() for c in conditions], y=condition_counts,
title="Most Commonly Studied Conditions",
labels={"x": "Condition", "y": "Number of Papers"}
)
fig_conditions.update_xaxes(tickangle=45)
plots["conditions"] = fig_conditions
return plots
def create_veterinary_gradio_interface():
"""Create the Gradio interface for veterinary literature mining"""
miner = VeterinaryLiteratureMiner()
def search_and_analyze_vet(query, max_results, database):
"""Main function to search and analyze veterinary literature"""
try:
print(f"Starting search with query: {query}") # Debug print
if not query.strip():
return "Please enter a search query.", None, None, None, None, None
# Search papers
print("Searching papers...") # Debug print
papers = miner.search_veterinary_literature(query, max_results, database)
print(f"Found {len(papers) if papers else 0} papers") # Debug print
if not papers:
return "No papers found. Try a different search query.", None, None, None, None, None
if papers[0].get("error"):
error_msg = papers[0].get("error", "Unknown error occurred")
return f"Search Error: {error_msg}", None, None, None, None, None
# Analyze papers
print("Analyzing papers...") # Debug print
analysis = miner.analyze_veterinary_papers(papers)
if analysis.get("error"):
return f"Analysis Error: {analysis['error']}", None, None, None, None, None
# Generate summary
print("Generating summary...") # Debug print
summary = miner.generate_veterinary_summary(papers, analysis)
# Create visualizations
print("Creating visualizations...") # Debug print
plots = miner.create_veterinary_visualizations(analysis)
# Create papers dataframe
print("Creating dataframe...") # Debug print
papers_df = pd.DataFrame([
{
"PMID": p.get("pmid", "N/A"),
"Title": p.get("title", "N/A")[:100] + "..." if len(p.get("title", "")) > 100 else p.get("title", "N/A"),
"Authors": p.get("authors", "N/A"),
"Journal": p.get("journal", "N/A"),
"Year": p.get("year", "N/A")
}
for p in papers
])
print("Search and analysis complete!") # Debug print
return (
summary,
papers_df,
plots.get("year_dist"),
plots.get("animal_species"),
plots.get("specialties"),
plots.get("conditions")
)
except Exception as e:
error_message = f"Unexpected error: {str(e)}"
print(f"Error in search_and_analyze_vet: {error_message}") # Debug print
return error_message, None, None, None, None, None
# Create interface
with gr.Blocks(title="Veterinary Literature Mining Agent", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# πΎ Veterinary Literature Mining Agent
This AI agent searches and analyzes veterinary and animal health literature across all specialties.
It automatically extracts insights about animal species, veterinary specialties, common conditions, and treatment trends.
**Features:**
- Comprehensive veterinary literature search
- Multi-species analysis (companion animals, livestock, wildlife, exotics)
- Veterinary specialty categorization
- Treatment and drug trend analysis
- Interactive visualizations
- Journal and publication pattern analysis
""")
with gr.Row():
with gr.Column(scale=2):
query_input = gr.Textbox(
label="Research Query",
placeholder="e.g., 'canine diabetes management', 'equine lameness diagnosis', 'feline kidney disease', 'wildlife conservation medicine'",
lines=2
)
with gr.Row():
max_results = gr.Slider(
minimum=10, maximum=100, value=50, step=10,
label="Maximum Results"
)
database_choice = gr.Dropdown(
choices=["pubmed"],
value="pubmed",
label="Database"
)
search_btn = gr.Button("π Search Veterinary Literature", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("""
### Search Tips:
- **Species**: dog, cat, horse, cattle, pig, bird, fish, reptile, wildlife
- **Specialties**: cardiology, oncology, surgery, dermatology, neurology
- **Conditions**: diabetes, arthritis, cancer, infection, allergies
- **Procedures**: vaccination, surgery, imaging, therapy
- **Combine terms**: "feline diabetes insulin therapy"
""")
with gr.Tabs():
with gr.TabItem("π Analysis Summary"):
summary_output = gr.Markdown(label="Veterinary Literature Analysis")
with gr.TabItem("π Research Papers"):
papers_output = gr.Dataframe(
headers=["PMID", "Title", "Authors", "Journal", "Year"],
label="Retrieved Veterinary Papers"
)
with gr.TabItem("π Research Trends"):
with gr.Row():
year_plot = gr.Plot(label="Publication Timeline")
species_plot = gr.Plot(label="Animal Species")
with gr.Row():
specialties_plot = gr.Plot(label="Veterinary Specialties")
conditions_plot = gr.Plot(label="Common Conditions")
# Connect the search function with progress indicator
search_btn.click(
fn=search_and_analyze_vet,
inputs=[query_input, max_results, database_choice],
outputs=[summary_output, papers_output, year_plot, species_plot, specialties_plot, conditions_plot],
show_progress=True
)
# Add examples
gr.Examples(
examples=[
["canine diabetes insulin therapy", 40, "pubmed"],
["equine lameness diagnosis imaging", 35, "pubmed"],
["feline chronic kidney disease treatment", 45, "pubmed"],
["bovine mastitis antibiotic resistance", 30, "pubmed"],
["avian influenza surveillance wild birds", 35, "pubmed"],
["exotic animal anesthesia protocols", 25, "pubmed"],
["wildlife conservation medicine", 40, "pubmed"],
["small animal oncology chemotherapy", 50, "pubmed"]
],
inputs=[query_input, max_results, database_choice]
)
gr.Markdown("""
### About This Veterinary Literature Mining Agent
This comprehensive tool is designed for veterinary professionals, researchers, and students to efficiently
search and analyze veterinary literature across all animal species and medical specialties.
**Supported Areas:**
- **Companion Animals**: Dogs, cats, rabbits, ferrets, birds, reptiles, fish
- **Large Animals**: Horses, cattle, pigs, sheep, goats
- **Wildlife & Zoo Medicine**: All wild species and conservation medicine
- **Laboratory Animals**: Research and laboratory animal medicine
- **All Veterinary Specialties**: Internal medicine, surgery, oncology, cardiology, dermatology, etc.
**Data Sources:** PubMed/NCBI databases with veterinary focus
**Last Updated:** June 2025
**Coverage:** All aspects of veterinary medicine and animal health
""")
return interface
# Create and launch the interface
if __name__ == "__main__":
interface = create_veterinary_gradio_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |