CCockrum commited on
Commit
d4e1e5e
Β·
verified Β·
1 Parent(s): abefdbc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +443 -361
app.py CHANGED
@@ -1,378 +1,460 @@
 
1
  import numpy as np
2
  import torch
3
- import torch.nn as nn
4
- import torch.optim as optim
5
- from typing import Dict, List, Tuple, Any, Optional
6
- import logging
7
- from dataclasses import dataclass
8
- from scipy.optimize import minimize
9
  import json
 
 
 
 
 
10
 
11
- logger = logging.getLogger(__name__)
12
-
13
- @dataclass
14
- class QuantumState:
15
- """Represents a quantum state."""
16
- amplitudes: np.ndarray
17
- num_qubits: int
18
- fidelity: float = 1.0
19
-
20
- def __post_init__(self):
21
- """Normalize amplitudes after initialization."""
22
- self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
23
-
24
- @dataclass
25
- class QuantumCircuit:
26
- """Represents a quantum circuit."""
27
- gates: List[str]
28
- parameters: np.ndarray
29
- num_qubits: int
30
- depth: int
31
-
32
- def __post_init__(self):
33
- """Initialize circuit properties."""
34
- if len(self.gates) == 0:
35
- # Generate some default gates for demonstration
36
- gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
37
- self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
38
 
39
- class QuantumNeuralNetwork(nn.Module):
40
- """Neural network for quantum parameter optimization."""
41
-
42
- def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
43
- super().__init__()
44
- self.network = nn.Sequential(
45
- nn.Linear(input_dim, hidden_dim),
46
- nn.ReLU(),
47
- nn.Linear(hidden_dim, hidden_dim),
48
- nn.ReLU(),
49
- nn.Linear(hidden_dim, output_dim)
50
- )
51
-
52
- def forward(self, x):
53
- return self.network(x)
54
-
55
- class ErrorMitigationNetwork(nn.Module):
56
- """Neural network for quantum error mitigation."""
57
-
58
- def __init__(self, state_dim: int, hidden_dim: int = 128):
59
- super().__init__()
60
- self.encoder = nn.Sequential(
61
- nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
62
- nn.ReLU(),
63
- nn.Linear(hidden_dim, hidden_dim),
64
- nn.ReLU()
65
- )
66
-
67
- self.decoder = nn.Sequential(
68
- nn.Linear(hidden_dim, hidden_dim),
69
- nn.ReLU(),
70
- nn.Linear(hidden_dim, state_dim * 2),
71
- nn.Tanh()
72
- )
73
-
74
- def forward(self, x):
75
- encoded = self.encoder(x)
76
- decoded = self.decoder(encoded)
77
- return decoded
78
 
79
- class QuantumAIAgent:
80
- """AI agent for quantum computing optimization."""
81
 
82
  def __init__(self):
83
- """Initialize the quantum AI agent."""
84
- self.optimization_history = []
85
- self.error_mitigation_net = None
86
- self.parameter_optimizer = None
87
- logger.info("QuantumAIAgent initialized")
88
-
89
- def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
90
- initial_params: np.ndarray) -> Dict[str, Any]:
91
- """Optimize quantum algorithm parameters."""
92
- logger.info(f"Optimizing {algorithm} algorithm")
93
-
94
- if algorithm == "VQE":
95
- return self._optimize_vqe(hamiltonian, initial_params)
96
- elif algorithm == "QAOA":
97
- return self._optimize_qaoa(hamiltonian, initial_params)
98
- else:
99
- raise ValueError(f"Unknown algorithm: {algorithm}")
100
 
101
- def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
102
- """Optimize VQE parameters."""
103
- def objective(params):
104
- # Simulate VQE energy calculation
105
- # In practice, this would involve quantum circuit simulation
106
- circuit_result = self._simulate_vqe_circuit(params, hamiltonian)
107
- return circuit_result
108
-
109
- # Use classical optimization
110
- result = minimize(objective, initial_params, method='BFGS')
111
-
112
- # Create optimal circuit
113
- optimal_circuit = QuantumCircuit(
114
- gates=[],
115
- parameters=result.x,
116
- num_qubits=int(np.log2(hamiltonian.shape[0])),
117
- depth=len(result.x) // 2
118
- )
119
-
120
- return {
121
- 'ground_state_energy': result.fun,
122
- 'optimization_success': result.success,
123
- 'iterations': result.nit,
124
- 'optimal_parameters': result.x,
125
- 'optimal_circuit': optimal_circuit
126
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
- def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]:
129
- """Optimize QAOA parameters."""
130
- num_layers = len(initial_params) // 2
131
-
132
- def objective(params):
133
- beta = params[:num_layers]
134
- gamma = params[num_layers:]
135
- return self._simulate_qaoa_circuit(beta, gamma, hamiltonian)
136
-
137
- result = minimize(objective, initial_params, method='COBYLA')
138
-
139
- return {
140
- 'optimal_value': -result.fun, # Minimize negative for maximization
141
- 'optimization_success': result.success,
142
- 'iterations': result.nit,
143
- 'optimal_beta': result.x[:num_layers],
144
- 'optimal_gamma': result.x[num_layers:]
145
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
- def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float:
148
- """Simulate VQE circuit and return energy expectation."""
149
- # Simplified simulation - create parameterized state
150
- num_qubits = int(np.log2(hamiltonian.shape[0]))
151
-
152
- # Create a parameterized quantum state (simplified)
153
- angles = params[:num_qubits]
154
- state = np.zeros(2**num_qubits, dtype=complex)
155
-
156
- # Simple parameterization: each qubit gets a rotation
157
- for i in range(2**num_qubits):
158
- amplitude = 1.0
159
- for q in range(num_qubits):
160
- if (i >> q) & 1:
161
- amplitude *= np.sin(angles[q % len(angles)])
162
- else:
163
- amplitude *= np.cos(angles[q % len(angles)])
164
- state[i] = amplitude
165
-
166
- # Normalize
167
- state = state / np.linalg.norm(state)
168
-
169
- # Calculate expectation value
170
- energy = np.real(np.conj(state).T @ hamiltonian @ state)
171
- return energy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float:
174
- """Simulate QAOA circuit and return objective value."""
175
- # Simplified QAOA simulation
176
- num_qubits = int(np.log2(hamiltonian.shape[0]))
177
-
178
- # Start with uniform superposition
179
- state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits)
180
-
181
- # Apply QAOA layers (simplified)
182
- for i in range(len(beta)):
183
- # Problem Hamiltonian evolution (simplified)
184
- phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian))
185
- state = phase_factors * state
186
-
187
- # Mixer Hamiltonian evolution (simplified X rotations)
188
- # This is a very simplified version
189
- for q in range(num_qubits):
190
- # Apply rotation (simplified)
191
- rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i])
192
- state = state * rotation_factor
193
-
194
- # Normalize
195
- state = state / np.linalg.norm(state)
196
-
197
- # Calculate expectation value
198
- expectation = np.real(np.conj(state).T @ hamiltonian @ state)
199
- return -expectation # Return negative for minimization
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
- def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState:
202
- """Apply AI-powered error mitigation."""
203
- logger.info("Applying error mitigation")
204
-
205
- # Initialize error mitigation network if not exists
206
- if self.error_mitigation_net is None:
207
- state_dim = len(quantum_state.amplitudes)
208
- self.error_mitigation_net = ErrorMitigationNetwork(state_dim)
209
-
210
- # Convert quantum state to real input (real and imaginary parts)
211
- state_real = np.real(quantum_state.amplitudes)
212
- state_imag = np.imag(quantum_state.amplitudes)
213
- input_data = np.concatenate([state_real, state_imag])
214
-
215
- # Apply noise simulation
216
- noise_factor = noise_model.get('noise_factor', 0.1)
217
- noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape)
218
-
219
- # Apply error mitigation (simplified - in practice would be trained)
220
- with torch.no_grad():
221
- input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0)
222
- corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy()
223
-
224
- # Convert back to complex amplitudes
225
- mid_point = len(corrected_output) // 2
226
- corrected_real = corrected_output[:mid_point]
227
- corrected_imag = corrected_output[mid_point:]
228
- corrected_amplitudes = corrected_real + 1j * corrected_imag
229
-
230
- # Normalize
231
- corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes)
232
-
233
- # Calculate improved fidelity
234
- original_fidelity = quantum_state.fidelity
235
- fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement
236
- new_fidelity = min(1.0, original_fidelity + fidelity_improvement)
237
-
238
- return QuantumState(
239
- amplitudes=corrected_amplitudes,
240
- num_qubits=quantum_state.num_qubits,
241
- fidelity=new_fidelity
242
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
 
244
- def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]:
245
- """Optimize quantum resource allocation."""
246
- logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits")
247
-
248
- # Simple scheduling algorithm
249
- schedule = []
250
- current_time = 0
251
- total_qubits_used = 0
252
-
253
- # Sort circuits by qubit requirement (First-Fit Decreasing)
254
- sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True)
255
-
256
- for circuit_id, circuit in sorted_circuits:
257
- if circuit.num_qubits <= available_qubits:
258
- # Estimate execution time based on circuit depth
259
- estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate
 
 
 
 
 
 
 
 
 
 
260
 
261
- schedule.append({
262
- 'circuit_id': circuit_id,
263
- 'qubits_allocated': circuit.num_qubits,
264
- 'start_time': current_time,
265
- 'estimated_duration': estimated_duration
266
- })
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
- current_time += estimated_duration
269
- total_qubits_used += circuit.num_qubits
270
-
271
- # Calculate resource utilization
272
- max_possible_qubits = len(circuits) * available_qubits
273
- resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0
274
-
275
- return {
276
- 'schedule': schedule,
277
- 'resource_utilization': resource_utilization,
278
- 'estimated_runtime': current_time,
279
- 'circuits_scheduled': len(schedule)
280
- }
281
-
282
- def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]:
283
- """Perform hybrid quantum-classical processing."""
284
- logger.info(f"Running hybrid processing with {quantum_component}")
285
-
286
- # Preprocess classical data
287
- preprocessed_data = self._preprocess_classical_data(classical_data)
288
-
289
- # Apply quantum component
290
- if quantum_component == "quantum_kernel":
291
- quantum_result = self._apply_quantum_kernel(preprocessed_data)
292
- elif quantum_component == "quantum_feature_map":
293
- quantum_result = self._apply_quantum_feature_map(preprocessed_data)
294
- elif quantum_component == "quantum_neural_layer":
295
- quantum_result = self._apply_quantum_neural_layer(preprocessed_data)
296
- else:
297
- raise ValueError(f"Unknown quantum component: {quantum_component}")
298
-
299
- # Post-process results
300
- final_result = self._postprocess_quantum_result(quantum_result)
301
-
302
- return {
303
- 'preprocessed_data': preprocessed_data,
304
- 'quantum_result': quantum_result,
305
- 'final_result': final_result
306
- }
307
-
308
- def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray:
309
- """Preprocess classical data for quantum processing."""
310
- # Normalize data
311
- normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8)
312
-
313
- # Apply some classical preprocessing
314
- processed_data = np.tanh(normalized_data) # Squash to [-1, 1]
315
-
316
- return processed_data
317
-
318
- def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray:
319
- """Apply quantum kernel transformation."""
320
- # Simulate quantum kernel computation
321
- # In practice, this would involve quantum feature maps
322
- kernel_matrix = np.zeros((len(data), len(data)))
323
-
324
- for i in range(len(data)):
325
- for j in range(len(data)):
326
- # Simplified quantum kernel (RBF-like with quantum enhancement)
327
- diff = data[i] - data[j]
328
- quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2)
329
- kernel_matrix[i, j] = quantum_enhancement
330
-
331
- return kernel_matrix
332
-
333
- def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray:
334
- """Apply quantum feature map."""
335
- # Simulate quantum feature mapping
336
- num_features = len(data)
337
- quantum_features = np.zeros(num_features * 2) # Expand feature space
338
-
339
- for i, x in enumerate(data):
340
- # Simulate quantum feature encoding
341
- quantum_features[2*i] = np.cos(np.pi * x)
342
- quantum_features[2*i + 1] = np.sin(np.pi * x)
343
-
344
- return quantum_features
345
-
346
- def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
347
- """Apply quantum neural network layer."""
348
- # Simulate quantum neural network layer
349
- output_size = len(data)
350
- quantum_output = np.zeros(output_size)
351
-
352
- # Simplified quantum neural transformation
353
- for i, x in enumerate(data):
354
- # Simulate parameterized quantum circuit
355
- theta = x * np.pi / 4 # Parameter encoding
356
- quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
357
-
358
- return quantum_output
359
 
360
- def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]:
361
- """Post-process quantum results."""
362
- # Calculate statistics
363
- stats = {
364
- 'mean': np.mean(quantum_result),
365
- 'std': np.std(quantum_result),
366
- 'min': np.min(quantum_result),
367
- 'max': np.max(quantum_result)
368
- }
369
-
370
- # Calculate confidence (simplified)
371
- confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
372
- confidence = max(0, min(1, confidence))
373
-
374
- return {
375
- 'statistics': stats,
376
- 'confidence': confidence,
377
- 'processed_data': quantum_result
378
- }
 
1
+ import gradio as gr
2
  import numpy as np
3
  import torch
 
 
 
 
 
 
4
  import json
5
+ import matplotlib.pyplot as plt
6
+ import plotly.graph_objects as go
7
+ import plotly.express as px
8
+ from typing import Dict, List, Tuple, Any
9
+ import logging
10
 
11
+ # Import your quantum AI agent (assuming it's in quantum_agent.py)
12
+ from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ # Configure logging
15
+ logging.basicConfig(level=logging.INFO)
16
+ logger = logging.getLogger(__name__)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ class QuantumAIInterface:
19
+ """Gradio interface for the Quantum AI Agent."""
20
 
21
  def __init__(self):
22
+ self.agent = QuantumAIAgent()
23
+ logger.info("Quantum AI Interface initialized")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ def optimize_vqe(self, num_qubits: int, optimization_steps: int) -> Tuple[str, str]:
26
+ """VQE optimization interface."""
27
+ try:
28
+ # Create a random Hamiltonian
29
+ dim = 2**num_qubits
30
+ hamiltonian = np.random.random((dim, dim))
31
+ hamiltonian = hamiltonian + hamiltonian.T # Make Hermitian
32
+
33
+ # Initialize random parameters
34
+ initial_params = np.random.random(num_qubits * 2)
35
+
36
+ # Run optimization
37
+ result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params)
38
+
39
+ # Format results
40
+ result_text = f"""
41
+ VQE Optimization Results:
42
+ ========================
43
+ Ground State Energy: {result['ground_state_energy']:.6f}
44
+ Optimization Success: {result['optimization_success']}
45
+ Number of Iterations: {result['iterations']}
46
+ Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)}
47
+ Circuit Depth: {result['optimal_circuit'].depth}
48
+ """
49
+
50
+ # Create visualization
51
+ fig = plt.figure(figsize=(10, 6))
52
+ plt.subplot(1, 2, 1)
53
+ plt.plot(result['optimal_parameters'], 'bo-')
54
+ plt.title('Optimal Parameters')
55
+ plt.xlabel('Parameter Index')
56
+ plt.ylabel('Value')
57
+
58
+ plt.subplot(1, 2, 2)
59
+ plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters'])
60
+ plt.title('Parameter Distribution')
61
+ plt.xlabel('Parameter Index')
62
+ plt.ylabel('Value')
63
+
64
+ plt.tight_layout()
65
+ plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight')
66
+ plt.close()
67
+
68
+ return result_text, 'vqe_results.png'
69
+
70
+ except Exception as e:
71
+ error_msg = f"Error in VQE optimization: {str(e)}"
72
+ logger.error(error_msg)
73
+ return error_msg, None
74
 
75
+ def optimize_qaoa(self, num_qubits: int, num_layers: int) -> Tuple[str, str]:
76
+ """QAOA optimization interface."""
77
+ try:
78
+ # Create problem Hamiltonian
79
+ dim = 2**num_qubits
80
+ hamiltonian = np.random.random((dim, dim))
81
+ hamiltonian = hamiltonian + hamiltonian.T
82
+
83
+ # Initialize QAOA parameters
84
+ initial_params = np.random.random(2 * num_layers) # beta and gamma
85
+
86
+ # Run optimization
87
+ result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params)
88
+
89
+ result_text = f"""
90
+ QAOA Optimization Results:
91
+ =========================
92
+ Optimal Value: {result['optimal_value']:.6f}
93
+ Optimization Success: {result['optimization_success']}
94
+ Number of Iterations: {result['iterations']}
95
+ Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)}
96
+ Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)}
97
+ """
98
+
99
+ # Create visualization
100
+ fig = plt.figure(figsize=(12, 5))
101
+
102
+ plt.subplot(1, 3, 1)
103
+ plt.plot(result['optimal_beta'], 'ro-', label='Beta')
104
+ plt.plot(result['optimal_gamma'], 'bo-', label='Gamma')
105
+ plt.title('QAOA Parameters')
106
+ plt.xlabel('Layer')
107
+ plt.ylabel('Value')
108
+ plt.legend()
109
+
110
+ plt.subplot(1, 3, 2)
111
+ plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta')
112
+ plt.title('Beta Parameters')
113
+ plt.xlabel('Layer')
114
+ plt.ylabel('Value')
115
+
116
+ plt.subplot(1, 3, 3)
117
+ plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange')
118
+ plt.title('Gamma Parameters')
119
+ plt.xlabel('Layer')
120
+ plt.ylabel('Value')
121
+
122
+ plt.tight_layout()
123
+ plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight')
124
+ plt.close()
125
+
126
+ return result_text, 'qaoa_results.png'
127
+
128
+ except Exception as e:
129
+ error_msg = f"Error in QAOA optimization: {str(e)}"
130
+ logger.error(error_msg)
131
+ return error_msg, None
132
 
133
+ def demonstrate_error_mitigation(self, num_qubits: int, noise_level: float) -> Tuple[str, str]:
134
+ """Error mitigation demonstration."""
135
+ try:
136
+ # Create a quantum state
137
+ dim = 2**num_qubits
138
+ amplitudes = np.random.random(dim) + 1j * np.random.random(dim)
139
+ amplitudes = amplitudes / np.linalg.norm(amplitudes)
140
+
141
+ quantum_state = QuantumState(
142
+ amplitudes=amplitudes,
143
+ num_qubits=num_qubits,
144
+ fidelity=1.0 - noise_level
145
+ )
146
+
147
+ # Apply error mitigation
148
+ noise_model = {"noise_factor": noise_level}
149
+ corrected_state = self.agent.mitigate_errors(quantum_state, noise_model)
150
+
151
+ result_text = f"""
152
+ Error Mitigation Results:
153
+ ========================
154
+ Number of Qubits: {num_qubits}
155
+ Original Fidelity: {quantum_state.fidelity:.4f}
156
+ Corrected Fidelity: {corrected_state.fidelity:.4f}
157
+ Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f}
158
+ Noise Level: {noise_level:.4f}
159
+ """
160
+
161
+ # Create visualization
162
+ fig = plt.figure(figsize=(12, 5))
163
+
164
+ plt.subplot(1, 3, 1)
165
+ plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity])
166
+ plt.title('Fidelity Comparison')
167
+ plt.ylabel('Fidelity')
168
+ plt.ylim(0, 1)
169
+
170
+ plt.subplot(1, 3, 2)
171
+ plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7)
172
+ plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7)
173
+ plt.title('State Amplitudes (Magnitude)')
174
+ plt.xlabel('Basis State')
175
+ plt.ylabel('Amplitude')
176
+ plt.legend()
177
+
178
+ plt.subplot(1, 3, 3)
179
+ improvement = corrected_state.fidelity - quantum_state.fidelity
180
+ plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red')
181
+ plt.title('Improvement')
182
+ plt.ylabel('Fidelity Change')
183
+
184
+ plt.tight_layout()
185
+ plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight')
186
+ plt.close()
187
+
188
+ return result_text, 'error_mitigation_results.png'
189
+
190
+ except Exception as e:
191
+ error_msg = f"Error in error mitigation: {str(e)}"
192
+ logger.error(error_msg)
193
+ return error_msg, None
194
 
195
+ def optimize_resources(self, num_circuits: int, max_qubits: int, available_qubits: int) -> Tuple[str, str]:
196
+ """Resource optimization demonstration."""
197
+ try:
198
+ # Generate random circuits
199
+ circuits = []
200
+ for i in range(num_circuits):
201
+ num_qubits = np.random.randint(2, min(max_qubits, available_qubits) + 1)
202
+ depth = np.random.randint(5, 50)
203
+ circuits.append(QuantumCircuit([], np.array([]), num_qubits, depth))
204
+
205
+ # Optimize resources
206
+ allocation_plan = self.agent.optimize_resources(circuits, available_qubits)
207
+
208
+ result_text = f"""
209
+ Resource Optimization Results:
210
+ =============================
211
+ Number of Circuits: {num_circuits}
212
+ Available Qubits: {available_qubits}
213
+ Resource Utilization: {allocation_plan['resource_utilization']:.2%}
214
+ Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units
215
+ Scheduled Circuits: {len(allocation_plan['schedule'])}
216
+ """
217
+
218
+ if allocation_plan['schedule']:
219
+ result_text += "\nSchedule Details:\n"
220
+ for i, task in enumerate(allocation_plan['schedule'][:5]): # Show first 5
221
+ result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n"
222
+
223
+ # Create visualization
224
+ fig = plt.figure(figsize=(12, 8))
225
+
226
+ # Resource utilization
227
+ plt.subplot(2, 2, 1)
228
+ plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']],
229
+ labels=['Used', 'Available'], autopct='%1.1f%%')
230
+ plt.title('Resource Utilization')
231
+
232
+ # Circuit requirements
233
+ plt.subplot(2, 2, 2)
234
+ qubit_reqs = [c.num_qubits for c in circuits]
235
+ plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7)
236
+ plt.title('Circuit Qubit Requirements')
237
+ plt.xlabel('Number of Qubits')
238
+ plt.ylabel('Frequency')
239
+
240
+ # Circuit depths
241
+ plt.subplot(2, 2, 3)
242
+ depths = [c.depth for c in circuits]
243
+ plt.hist(depths, bins=10, alpha=0.7, color='orange')
244
+ plt.title('Circuit Depths')
245
+ plt.xlabel('Depth')
246
+ plt.ylabel('Frequency')
247
+
248
+ # Schedule timeline
249
+ plt.subplot(2, 2, 4)
250
+ if allocation_plan['schedule']:
251
+ start_times = [task['start_time'] for task in allocation_plan['schedule']]
252
+ durations = [task['estimated_duration'] for task in allocation_plan['schedule']]
253
+ plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7)
254
+ plt.title('Schedule Timeline')
255
+ plt.xlabel('Time')
256
+ plt.ylabel('Circuit')
257
+
258
+ plt.tight_layout()
259
+ plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight')
260
+ plt.close()
261
+
262
+ return result_text, 'resource_optimization_results.png'
263
+
264
+ except Exception as e:
265
+ error_msg = f"Error in resource optimization: {str(e)}"
266
+ logger.error(error_msg)
267
+ return error_msg, None
268
 
269
+ def hybrid_processing_demo(self, data_size: int, quantum_component: str) -> Tuple[str, str]:
270
+ """Hybrid processing demonstration."""
271
+ try:
272
+ # Generate classical data
273
+ classical_data = np.random.random(data_size)
274
+
275
+ # Run hybrid processing
276
+ result = self.agent.hybrid_processing(classical_data, quantum_component)
277
+
278
+ result_text = f"""
279
+ Hybrid Processing Results:
280
+ =========================
281
+ Input Data Size: {data_size}
282
+ Quantum Component: {quantum_component}
283
+ Output Statistics:
284
+ Mean: {result['final_result']['statistics']['mean']:.6f}
285
+ Std: {result['final_result']['statistics']['std']:.6f}
286
+ Min: {result['final_result']['statistics']['min']:.6f}
287
+ Max: {result['final_result']['statistics']['max']:.6f}
288
+ Confidence: {result['final_result']['confidence']:.4f}
289
+ """
290
+
291
+ # Create visualization
292
+ fig = plt.figure(figsize=(15, 5))
293
+
294
+ plt.subplot(1, 3, 1)
295
+ plt.plot(classical_data, 'b-', alpha=0.7)
296
+ plt.title('Original Classical Data')
297
+ plt.xlabel('Index')
298
+ plt.ylabel('Value')
299
+
300
+ plt.subplot(1, 3, 2)
301
+ plt.plot(result['preprocessed_data'], 'g-', alpha=0.7)
302
+ plt.title('Preprocessed Data')
303
+ plt.xlabel('Index')
304
+ plt.ylabel('Value')
305
+
306
+ plt.subplot(1, 3, 3)
307
+ plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7)
308
+ plt.title(f'Quantum Result ({quantum_component})')
309
+ plt.xlabel('Index')
310
+ plt.ylabel('Value')
311
+
312
+ plt.tight_layout()
313
+ plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight')
314
+ plt.close()
315
+
316
+ return result_text, 'hybrid_processing_results.png'
317
+
318
+ except Exception as e:
319
+ error_msg = f"Error in hybrid processing: {str(e)}"
320
+ logger.error(error_msg)
321
+ return error_msg, None
322
+
323
+ def create_interface():
324
+ """Create the Gradio interface."""
325
+ interface = QuantumAIInterface()
326
 
327
+ with gr.Blocks(title="Quantum AI Agent", theme=gr.themes.Soft()) as demo:
328
+ gr.Markdown("""
329
+ # πŸš€ Quantum AI Agent
330
+
331
+ This is an AI agent designed to optimize quantum computing algorithms using classical machine learning techniques.
332
+
333
+ ## Features:
334
+ - **Algorithm Optimization**: VQE, QAOA, QNN parameter optimization
335
+ - **Error Mitigation**: AI-powered quantum error correction
336
+ - **Resource Management**: Intelligent qubit allocation and scheduling
337
+ - **Hybrid Processing**: Quantum-classical algorithm integration
338
+ """)
339
+
340
+ with gr.Tabs():
341
+ # VQE Tab
342
+ with gr.TabItem("πŸ”¬ VQE Optimization"):
343
+ gr.Markdown("### Variational Quantum Eigensolver")
344
+ with gr.Row():
345
+ with gr.Column():
346
+ vqe_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
347
+ vqe_steps = gr.Slider(10, 1000, value=100, step=10, label="Optimization Steps")
348
+ vqe_button = gr.Button("Optimize VQE", variant="primary")
349
+
350
+ with gr.Column():
351
+ vqe_output = gr.Textbox(label="Results", lines=10)
352
+ vqe_plot = gr.Image(label="Visualization")
353
 
354
+ vqe_button.click(
355
+ interface.optimize_vqe,
356
+ inputs=[vqe_qubits, vqe_steps],
357
+ outputs=[vqe_output, vqe_plot]
358
+ )
359
+
360
+ # QAOA Tab
361
+ with gr.TabItem("🎯 QAOA Optimization"):
362
+ gr.Markdown("### Quantum Approximate Optimization Algorithm")
363
+ with gr.Row():
364
+ with gr.Column():
365
+ qaoa_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
366
+ qaoa_layers = gr.Slider(1, 5, value=2, step=1, label="Number of Layers")
367
+ qaoa_button = gr.Button("Optimize QAOA", variant="primary")
368
+
369
+ with gr.Column():
370
+ qaoa_output = gr.Textbox(label="Results", lines=10)
371
+ qaoa_plot = gr.Image(label="Visualization")
372
 
373
+ qaoa_button.click(
374
+ interface.optimize_qaoa,
375
+ inputs=[qaoa_qubits, qaoa_layers],
376
+ outputs=[qaoa_output, qaoa_plot]
377
+ )
378
+
379
+ # Error Mitigation Tab
380
+ with gr.TabItem("πŸ›‘οΈ Error Mitigation"):
381
+ gr.Markdown("### Quantum Error Correction")
382
+ with gr.Row():
383
+ with gr.Column():
384
+ error_qubits = gr.Slider(2, 5, value=3, step=1, label="Number of Qubits")
385
+ noise_level = gr.Slider(0.0, 0.5, value=0.1, step=0.01, label="Noise Level")
386
+ error_button = gr.Button("Apply Error Mitigation", variant="primary")
387
+
388
+ with gr.Column():
389
+ error_output = gr.Textbox(label="Results", lines=10)
390
+ error_plot = gr.Image(label="Visualization")
391
+
392
+ error_button.click(
393
+ interface.demonstrate_error_mitigation,
394
+ inputs=[error_qubits, noise_level],
395
+ outputs=[error_output, error_plot]
396
+ )
397
+
398
+ # Resource Management Tab
399
+ with gr.TabItem("⚑ Resource Management"):
400
+ gr.Markdown("### Quantum Resource Optimization")
401
+ with gr.Row():
402
+ with gr.Column():
403
+ num_circuits = gr.Slider(3, 20, value=10, step=1, label="Number of Circuits")
404
+ max_qubits = gr.Slider(2, 10, value=5, step=1, label="Max Qubits per Circuit")
405
+ available_qubits = gr.Slider(5, 20, value=10, step=1, label="Available Qubits")
406
+ resource_button = gr.Button("Optimize Resources", variant="primary")
407
+
408
+ with gr.Column():
409
+ resource_output = gr.Textbox(label="Results", lines=10)
410
+ resource_plot = gr.Image(label="Visualization")
411
+
412
+ resource_button.click(
413
+ interface.optimize_resources,
414
+ inputs=[num_circuits, max_qubits, available_qubits],
415
+ outputs=[resource_output, resource_plot]
416
+ )
417
+
418
+ # Hybrid Processing Tab
419
+ with gr.TabItem("πŸ”„ Hybrid Processing"):
420
+ gr.Markdown("### Quantum-Classical Hybrid Algorithms")
421
+ with gr.Row():
422
+ with gr.Column():
423
+ data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size")
424
+ quantum_component = gr.Dropdown(
425
+ ["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"],
426
+ value="quantum_kernel",
427
+ label="Quantum Component"
428
+ )
429
+ hybrid_button = gr.Button("Run Hybrid Processing", variant="primary")
430
+
431
+ with gr.Column():
432
+ hybrid_output = gr.Textbox(label="Results", lines=10)
433
+ hybrid_plot = gr.Image(label="Visualization")
434
+
435
+ hybrid_button.click(
436
+ interface.hybrid_processing_demo,
437
+ inputs=[data_size, quantum_component],
438
+ outputs=[hybrid_output, hybrid_plot]
439
+ )
440
+
441
+ gr.Markdown("""
442
+ ---
443
+ ### About
444
+ This Quantum AI Agent demonstrates the integration of classical AI techniques with quantum computing algorithms.
445
+ It showcases optimization strategies for VQE and QAOA, error mitigation using neural networks,
446
+ intelligent resource management, and hybrid quantum-classical processing.
447
+
448
+ **Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require
449
+ additional components and API connections.
450
+ """)
 
 
 
 
 
 
 
 
 
 
 
 
 
451
 
452
+ return demo
453
+
454
+ if __name__ == "__main__":
455
+ demo = create_interface()
456
+ demo.launch(
457
+ server_name="0.0.0.0",
458
+ server_port=7860,
459
+ share=True
460
+ )