Update app.py
Browse files
app.py
CHANGED
@@ -1,378 +1,460 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.optim as optim
|
5 |
-
from typing import Dict, List, Tuple, Any, Optional
|
6 |
-
import logging
|
7 |
-
from dataclasses import dataclass
|
8 |
-
from scipy.optimize import minimize
|
9 |
import json
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
@dataclass
|
14 |
-
class QuantumState:
|
15 |
-
"""Represents a quantum state."""
|
16 |
-
amplitudes: np.ndarray
|
17 |
-
num_qubits: int
|
18 |
-
fidelity: float = 1.0
|
19 |
-
|
20 |
-
def __post_init__(self):
|
21 |
-
"""Normalize amplitudes after initialization."""
|
22 |
-
self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes)
|
23 |
-
|
24 |
-
@dataclass
|
25 |
-
class QuantumCircuit:
|
26 |
-
"""Represents a quantum circuit."""
|
27 |
-
gates: List[str]
|
28 |
-
parameters: np.ndarray
|
29 |
-
num_qubits: int
|
30 |
-
depth: int
|
31 |
-
|
32 |
-
def __post_init__(self):
|
33 |
-
"""Initialize circuit properties."""
|
34 |
-
if len(self.gates) == 0:
|
35 |
-
# Generate some default gates for demonstration
|
36 |
-
gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H']
|
37 |
-
self.gates = [np.random.choice(gate_types) for _ in range(self.depth)]
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1):
|
43 |
-
super().__init__()
|
44 |
-
self.network = nn.Sequential(
|
45 |
-
nn.Linear(input_dim, hidden_dim),
|
46 |
-
nn.ReLU(),
|
47 |
-
nn.Linear(hidden_dim, hidden_dim),
|
48 |
-
nn.ReLU(),
|
49 |
-
nn.Linear(hidden_dim, output_dim)
|
50 |
-
)
|
51 |
-
|
52 |
-
def forward(self, x):
|
53 |
-
return self.network(x)
|
54 |
-
|
55 |
-
class ErrorMitigationNetwork(nn.Module):
|
56 |
-
"""Neural network for quantum error mitigation."""
|
57 |
-
|
58 |
-
def __init__(self, state_dim: int, hidden_dim: int = 128):
|
59 |
-
super().__init__()
|
60 |
-
self.encoder = nn.Sequential(
|
61 |
-
nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts
|
62 |
-
nn.ReLU(),
|
63 |
-
nn.Linear(hidden_dim, hidden_dim),
|
64 |
-
nn.ReLU()
|
65 |
-
)
|
66 |
-
|
67 |
-
self.decoder = nn.Sequential(
|
68 |
-
nn.Linear(hidden_dim, hidden_dim),
|
69 |
-
nn.ReLU(),
|
70 |
-
nn.Linear(hidden_dim, state_dim * 2),
|
71 |
-
nn.Tanh()
|
72 |
-
)
|
73 |
-
|
74 |
-
def forward(self, x):
|
75 |
-
encoded = self.encoder(x)
|
76 |
-
decoded = self.decoder(encoded)
|
77 |
-
return decoded
|
78 |
|
79 |
-
class
|
80 |
-
"""
|
81 |
|
82 |
def __init__(self):
|
83 |
-
|
84 |
-
|
85 |
-
self.error_mitigation_net = None
|
86 |
-
self.parameter_optimizer = None
|
87 |
-
logger.info("QuantumAIAgent initialized")
|
88 |
-
|
89 |
-
def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray,
|
90 |
-
initial_params: np.ndarray) -> Dict[str, Any]:
|
91 |
-
"""Optimize quantum algorithm parameters."""
|
92 |
-
logger.info(f"Optimizing {algorithm} algorithm")
|
93 |
-
|
94 |
-
if algorithm == "VQE":
|
95 |
-
return self._optimize_vqe(hamiltonian, initial_params)
|
96 |
-
elif algorithm == "QAOA":
|
97 |
-
return self._optimize_qaoa(hamiltonian, initial_params)
|
98 |
-
else:
|
99 |
-
raise ValueError(f"Unknown algorithm: {algorithm}")
|
100 |
|
101 |
-
def
|
102 |
-
"""
|
103 |
-
|
104 |
-
#
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
def
|
129 |
-
"""
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
def
|
148 |
-
"""
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
def
|
174 |
-
"""
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
#
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
def
|
202 |
-
"""
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray:
|
347 |
-
"""Apply quantum neural network layer."""
|
348 |
-
# Simulate quantum neural network layer
|
349 |
-
output_size = len(data)
|
350 |
-
quantum_output = np.zeros(output_size)
|
351 |
-
|
352 |
-
# Simplified quantum neural transformation
|
353 |
-
for i, x in enumerate(data):
|
354 |
-
# Simulate parameterized quantum circuit
|
355 |
-
theta = x * np.pi / 4 # Parameter encoding
|
356 |
-
quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2)
|
357 |
-
|
358 |
-
return quantum_output
|
359 |
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
# Calculate confidence (simplified)
|
371 |
-
confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8)
|
372 |
-
confidence = max(0, min(1, confidence))
|
373 |
-
|
374 |
-
return {
|
375 |
-
'statistics': stats,
|
376 |
-
'confidence': confidence,
|
377 |
-
'processed_data': quantum_result
|
378 |
-
}
|
|
|
1 |
+
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import json
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import plotly.express as px
|
8 |
+
from typing import Dict, List, Tuple, Any
|
9 |
+
import logging
|
10 |
|
11 |
+
# Import your quantum AI agent (assuming it's in quantum_agent.py)
|
12 |
+
from quantum_agent import QuantumAIAgent, QuantumState, QuantumCircuit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
class QuantumAIInterface:
|
19 |
+
"""Gradio interface for the Quantum AI Agent."""
|
20 |
|
21 |
def __init__(self):
|
22 |
+
self.agent = QuantumAIAgent()
|
23 |
+
logger.info("Quantum AI Interface initialized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def optimize_vqe(self, num_qubits: int, optimization_steps: int) -> Tuple[str, str]:
|
26 |
+
"""VQE optimization interface."""
|
27 |
+
try:
|
28 |
+
# Create a random Hamiltonian
|
29 |
+
dim = 2**num_qubits
|
30 |
+
hamiltonian = np.random.random((dim, dim))
|
31 |
+
hamiltonian = hamiltonian + hamiltonian.T # Make Hermitian
|
32 |
+
|
33 |
+
# Initialize random parameters
|
34 |
+
initial_params = np.random.random(num_qubits * 2)
|
35 |
+
|
36 |
+
# Run optimization
|
37 |
+
result = self.agent.optimize_quantum_algorithm("VQE", hamiltonian, initial_params)
|
38 |
+
|
39 |
+
# Format results
|
40 |
+
result_text = f"""
|
41 |
+
VQE Optimization Results:
|
42 |
+
========================
|
43 |
+
Ground State Energy: {result['ground_state_energy']:.6f}
|
44 |
+
Optimization Success: {result['optimization_success']}
|
45 |
+
Number of Iterations: {result['iterations']}
|
46 |
+
Optimal Parameters: {np.array2string(result['optimal_parameters'], precision=4)}
|
47 |
+
Circuit Depth: {result['optimal_circuit'].depth}
|
48 |
+
"""
|
49 |
+
|
50 |
+
# Create visualization
|
51 |
+
fig = plt.figure(figsize=(10, 6))
|
52 |
+
plt.subplot(1, 2, 1)
|
53 |
+
plt.plot(result['optimal_parameters'], 'bo-')
|
54 |
+
plt.title('Optimal Parameters')
|
55 |
+
plt.xlabel('Parameter Index')
|
56 |
+
plt.ylabel('Value')
|
57 |
+
|
58 |
+
plt.subplot(1, 2, 2)
|
59 |
+
plt.bar(range(len(result['optimal_parameters'])), result['optimal_parameters'])
|
60 |
+
plt.title('Parameter Distribution')
|
61 |
+
plt.xlabel('Parameter Index')
|
62 |
+
plt.ylabel('Value')
|
63 |
+
|
64 |
+
plt.tight_layout()
|
65 |
+
plt.savefig('vqe_results.png', dpi=150, bbox_inches='tight')
|
66 |
+
plt.close()
|
67 |
+
|
68 |
+
return result_text, 'vqe_results.png'
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
error_msg = f"Error in VQE optimization: {str(e)}"
|
72 |
+
logger.error(error_msg)
|
73 |
+
return error_msg, None
|
74 |
|
75 |
+
def optimize_qaoa(self, num_qubits: int, num_layers: int) -> Tuple[str, str]:
|
76 |
+
"""QAOA optimization interface."""
|
77 |
+
try:
|
78 |
+
# Create problem Hamiltonian
|
79 |
+
dim = 2**num_qubits
|
80 |
+
hamiltonian = np.random.random((dim, dim))
|
81 |
+
hamiltonian = hamiltonian + hamiltonian.T
|
82 |
+
|
83 |
+
# Initialize QAOA parameters
|
84 |
+
initial_params = np.random.random(2 * num_layers) # beta and gamma
|
85 |
+
|
86 |
+
# Run optimization
|
87 |
+
result = self.agent.optimize_quantum_algorithm("QAOA", hamiltonian, initial_params)
|
88 |
+
|
89 |
+
result_text = f"""
|
90 |
+
QAOA Optimization Results:
|
91 |
+
=========================
|
92 |
+
Optimal Value: {result['optimal_value']:.6f}
|
93 |
+
Optimization Success: {result['optimization_success']}
|
94 |
+
Number of Iterations: {result['iterations']}
|
95 |
+
Optimal Beta: {np.array2string(result['optimal_beta'], precision=4)}
|
96 |
+
Optimal Gamma: {np.array2string(result['optimal_gamma'], precision=4)}
|
97 |
+
"""
|
98 |
+
|
99 |
+
# Create visualization
|
100 |
+
fig = plt.figure(figsize=(12, 5))
|
101 |
+
|
102 |
+
plt.subplot(1, 3, 1)
|
103 |
+
plt.plot(result['optimal_beta'], 'ro-', label='Beta')
|
104 |
+
plt.plot(result['optimal_gamma'], 'bo-', label='Gamma')
|
105 |
+
plt.title('QAOA Parameters')
|
106 |
+
plt.xlabel('Layer')
|
107 |
+
plt.ylabel('Value')
|
108 |
+
plt.legend()
|
109 |
+
|
110 |
+
plt.subplot(1, 3, 2)
|
111 |
+
plt.bar(range(len(result['optimal_beta'])), result['optimal_beta'], alpha=0.7, label='Beta')
|
112 |
+
plt.title('Beta Parameters')
|
113 |
+
plt.xlabel('Layer')
|
114 |
+
plt.ylabel('Value')
|
115 |
+
|
116 |
+
plt.subplot(1, 3, 3)
|
117 |
+
plt.bar(range(len(result['optimal_gamma'])), result['optimal_gamma'], alpha=0.7, label='Gamma', color='orange')
|
118 |
+
plt.title('Gamma Parameters')
|
119 |
+
plt.xlabel('Layer')
|
120 |
+
plt.ylabel('Value')
|
121 |
+
|
122 |
+
plt.tight_layout()
|
123 |
+
plt.savefig('qaoa_results.png', dpi=150, bbox_inches='tight')
|
124 |
+
plt.close()
|
125 |
+
|
126 |
+
return result_text, 'qaoa_results.png'
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
error_msg = f"Error in QAOA optimization: {str(e)}"
|
130 |
+
logger.error(error_msg)
|
131 |
+
return error_msg, None
|
132 |
|
133 |
+
def demonstrate_error_mitigation(self, num_qubits: int, noise_level: float) -> Tuple[str, str]:
|
134 |
+
"""Error mitigation demonstration."""
|
135 |
+
try:
|
136 |
+
# Create a quantum state
|
137 |
+
dim = 2**num_qubits
|
138 |
+
amplitudes = np.random.random(dim) + 1j * np.random.random(dim)
|
139 |
+
amplitudes = amplitudes / np.linalg.norm(amplitudes)
|
140 |
+
|
141 |
+
quantum_state = QuantumState(
|
142 |
+
amplitudes=amplitudes,
|
143 |
+
num_qubits=num_qubits,
|
144 |
+
fidelity=1.0 - noise_level
|
145 |
+
)
|
146 |
+
|
147 |
+
# Apply error mitigation
|
148 |
+
noise_model = {"noise_factor": noise_level}
|
149 |
+
corrected_state = self.agent.mitigate_errors(quantum_state, noise_model)
|
150 |
+
|
151 |
+
result_text = f"""
|
152 |
+
Error Mitigation Results:
|
153 |
+
========================
|
154 |
+
Number of Qubits: {num_qubits}
|
155 |
+
Original Fidelity: {quantum_state.fidelity:.4f}
|
156 |
+
Corrected Fidelity: {corrected_state.fidelity:.4f}
|
157 |
+
Fidelity Improvement: {corrected_state.fidelity - quantum_state.fidelity:.4f}
|
158 |
+
Noise Level: {noise_level:.4f}
|
159 |
+
"""
|
160 |
+
|
161 |
+
# Create visualization
|
162 |
+
fig = plt.figure(figsize=(12, 5))
|
163 |
+
|
164 |
+
plt.subplot(1, 3, 1)
|
165 |
+
plt.bar(['Original', 'Corrected'], [quantum_state.fidelity, corrected_state.fidelity])
|
166 |
+
plt.title('Fidelity Comparison')
|
167 |
+
plt.ylabel('Fidelity')
|
168 |
+
plt.ylim(0, 1)
|
169 |
+
|
170 |
+
plt.subplot(1, 3, 2)
|
171 |
+
plt.plot(np.abs(quantum_state.amplitudes), 'b-', label='Original', alpha=0.7)
|
172 |
+
plt.plot(np.abs(corrected_state.amplitudes), 'r-', label='Corrected', alpha=0.7)
|
173 |
+
plt.title('State Amplitudes (Magnitude)')
|
174 |
+
plt.xlabel('Basis State')
|
175 |
+
plt.ylabel('Amplitude')
|
176 |
+
plt.legend()
|
177 |
+
|
178 |
+
plt.subplot(1, 3, 3)
|
179 |
+
improvement = corrected_state.fidelity - quantum_state.fidelity
|
180 |
+
plt.bar(['Fidelity Improvement'], [improvement], color='green' if improvement > 0 else 'red')
|
181 |
+
plt.title('Improvement')
|
182 |
+
plt.ylabel('Fidelity Change')
|
183 |
+
|
184 |
+
plt.tight_layout()
|
185 |
+
plt.savefig('error_mitigation_results.png', dpi=150, bbox_inches='tight')
|
186 |
+
plt.close()
|
187 |
+
|
188 |
+
return result_text, 'error_mitigation_results.png'
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
error_msg = f"Error in error mitigation: {str(e)}"
|
192 |
+
logger.error(error_msg)
|
193 |
+
return error_msg, None
|
194 |
|
195 |
+
def optimize_resources(self, num_circuits: int, max_qubits: int, available_qubits: int) -> Tuple[str, str]:
|
196 |
+
"""Resource optimization demonstration."""
|
197 |
+
try:
|
198 |
+
# Generate random circuits
|
199 |
+
circuits = []
|
200 |
+
for i in range(num_circuits):
|
201 |
+
num_qubits = np.random.randint(2, min(max_qubits, available_qubits) + 1)
|
202 |
+
depth = np.random.randint(5, 50)
|
203 |
+
circuits.append(QuantumCircuit([], np.array([]), num_qubits, depth))
|
204 |
+
|
205 |
+
# Optimize resources
|
206 |
+
allocation_plan = self.agent.optimize_resources(circuits, available_qubits)
|
207 |
+
|
208 |
+
result_text = f"""
|
209 |
+
Resource Optimization Results:
|
210 |
+
=============================
|
211 |
+
Number of Circuits: {num_circuits}
|
212 |
+
Available Qubits: {available_qubits}
|
213 |
+
Resource Utilization: {allocation_plan['resource_utilization']:.2%}
|
214 |
+
Estimated Runtime: {allocation_plan['estimated_runtime']:.2f} time units
|
215 |
+
Scheduled Circuits: {len(allocation_plan['schedule'])}
|
216 |
+
"""
|
217 |
+
|
218 |
+
if allocation_plan['schedule']:
|
219 |
+
result_text += "\nSchedule Details:\n"
|
220 |
+
for i, task in enumerate(allocation_plan['schedule'][:5]): # Show first 5
|
221 |
+
result_text += f"Circuit {task['circuit_id']}: {task['qubits_allocated']} qubits, starts at {task['start_time']:.2f}\n"
|
222 |
+
|
223 |
+
# Create visualization
|
224 |
+
fig = plt.figure(figsize=(12, 8))
|
225 |
+
|
226 |
+
# Resource utilization
|
227 |
+
plt.subplot(2, 2, 1)
|
228 |
+
plt.pie([allocation_plan['resource_utilization'], 1 - allocation_plan['resource_utilization']],
|
229 |
+
labels=['Used', 'Available'], autopct='%1.1f%%')
|
230 |
+
plt.title('Resource Utilization')
|
231 |
+
|
232 |
+
# Circuit requirements
|
233 |
+
plt.subplot(2, 2, 2)
|
234 |
+
qubit_reqs = [c.num_qubits for c in circuits]
|
235 |
+
plt.hist(qubit_reqs, bins=min(10, max_qubits), alpha=0.7)
|
236 |
+
plt.title('Circuit Qubit Requirements')
|
237 |
+
plt.xlabel('Number of Qubits')
|
238 |
+
plt.ylabel('Frequency')
|
239 |
+
|
240 |
+
# Circuit depths
|
241 |
+
plt.subplot(2, 2, 3)
|
242 |
+
depths = [c.depth for c in circuits]
|
243 |
+
plt.hist(depths, bins=10, alpha=0.7, color='orange')
|
244 |
+
plt.title('Circuit Depths')
|
245 |
+
plt.xlabel('Depth')
|
246 |
+
plt.ylabel('Frequency')
|
247 |
+
|
248 |
+
# Schedule timeline
|
249 |
+
plt.subplot(2, 2, 4)
|
250 |
+
if allocation_plan['schedule']:
|
251 |
+
start_times = [task['start_time'] for task in allocation_plan['schedule']]
|
252 |
+
durations = [task['estimated_duration'] for task in allocation_plan['schedule']]
|
253 |
+
plt.barh(range(len(start_times)), durations, left=start_times, alpha=0.7)
|
254 |
+
plt.title('Schedule Timeline')
|
255 |
+
plt.xlabel('Time')
|
256 |
+
plt.ylabel('Circuit')
|
257 |
+
|
258 |
+
plt.tight_layout()
|
259 |
+
plt.savefig('resource_optimization_results.png', dpi=150, bbox_inches='tight')
|
260 |
+
plt.close()
|
261 |
+
|
262 |
+
return result_text, 'resource_optimization_results.png'
|
263 |
+
|
264 |
+
except Exception as e:
|
265 |
+
error_msg = f"Error in resource optimization: {str(e)}"
|
266 |
+
logger.error(error_msg)
|
267 |
+
return error_msg, None
|
268 |
|
269 |
+
def hybrid_processing_demo(self, data_size: int, quantum_component: str) -> Tuple[str, str]:
|
270 |
+
"""Hybrid processing demonstration."""
|
271 |
+
try:
|
272 |
+
# Generate classical data
|
273 |
+
classical_data = np.random.random(data_size)
|
274 |
+
|
275 |
+
# Run hybrid processing
|
276 |
+
result = self.agent.hybrid_processing(classical_data, quantum_component)
|
277 |
+
|
278 |
+
result_text = f"""
|
279 |
+
Hybrid Processing Results:
|
280 |
+
=========================
|
281 |
+
Input Data Size: {data_size}
|
282 |
+
Quantum Component: {quantum_component}
|
283 |
+
Output Statistics:
|
284 |
+
Mean: {result['final_result']['statistics']['mean']:.6f}
|
285 |
+
Std: {result['final_result']['statistics']['std']:.6f}
|
286 |
+
Min: {result['final_result']['statistics']['min']:.6f}
|
287 |
+
Max: {result['final_result']['statistics']['max']:.6f}
|
288 |
+
Confidence: {result['final_result']['confidence']:.4f}
|
289 |
+
"""
|
290 |
+
|
291 |
+
# Create visualization
|
292 |
+
fig = plt.figure(figsize=(15, 5))
|
293 |
+
|
294 |
+
plt.subplot(1, 3, 1)
|
295 |
+
plt.plot(classical_data, 'b-', alpha=0.7)
|
296 |
+
plt.title('Original Classical Data')
|
297 |
+
plt.xlabel('Index')
|
298 |
+
plt.ylabel('Value')
|
299 |
+
|
300 |
+
plt.subplot(1, 3, 2)
|
301 |
+
plt.plot(result['preprocessed_data'], 'g-', alpha=0.7)
|
302 |
+
plt.title('Preprocessed Data')
|
303 |
+
plt.xlabel('Index')
|
304 |
+
plt.ylabel('Value')
|
305 |
+
|
306 |
+
plt.subplot(1, 3, 3)
|
307 |
+
plt.plot(result['quantum_result'].flatten(), 'r-', alpha=0.7)
|
308 |
+
plt.title(f'Quantum Result ({quantum_component})')
|
309 |
+
plt.xlabel('Index')
|
310 |
+
plt.ylabel('Value')
|
311 |
+
|
312 |
+
plt.tight_layout()
|
313 |
+
plt.savefig('hybrid_processing_results.png', dpi=150, bbox_inches='tight')
|
314 |
+
plt.close()
|
315 |
+
|
316 |
+
return result_text, 'hybrid_processing_results.png'
|
317 |
+
|
318 |
+
except Exception as e:
|
319 |
+
error_msg = f"Error in hybrid processing: {str(e)}"
|
320 |
+
logger.error(error_msg)
|
321 |
+
return error_msg, None
|
322 |
+
|
323 |
+
def create_interface():
|
324 |
+
"""Create the Gradio interface."""
|
325 |
+
interface = QuantumAIInterface()
|
326 |
|
327 |
+
with gr.Blocks(title="Quantum AI Agent", theme=gr.themes.Soft()) as demo:
|
328 |
+
gr.Markdown("""
|
329 |
+
# π Quantum AI Agent
|
330 |
+
|
331 |
+
This is an AI agent designed to optimize quantum computing algorithms using classical machine learning techniques.
|
332 |
+
|
333 |
+
## Features:
|
334 |
+
- **Algorithm Optimization**: VQE, QAOA, QNN parameter optimization
|
335 |
+
- **Error Mitigation**: AI-powered quantum error correction
|
336 |
+
- **Resource Management**: Intelligent qubit allocation and scheduling
|
337 |
+
- **Hybrid Processing**: Quantum-classical algorithm integration
|
338 |
+
""")
|
339 |
+
|
340 |
+
with gr.Tabs():
|
341 |
+
# VQE Tab
|
342 |
+
with gr.TabItem("π¬ VQE Optimization"):
|
343 |
+
gr.Markdown("### Variational Quantum Eigensolver")
|
344 |
+
with gr.Row():
|
345 |
+
with gr.Column():
|
346 |
+
vqe_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
|
347 |
+
vqe_steps = gr.Slider(10, 1000, value=100, step=10, label="Optimization Steps")
|
348 |
+
vqe_button = gr.Button("Optimize VQE", variant="primary")
|
349 |
+
|
350 |
+
with gr.Column():
|
351 |
+
vqe_output = gr.Textbox(label="Results", lines=10)
|
352 |
+
vqe_plot = gr.Image(label="Visualization")
|
353 |
|
354 |
+
vqe_button.click(
|
355 |
+
interface.optimize_vqe,
|
356 |
+
inputs=[vqe_qubits, vqe_steps],
|
357 |
+
outputs=[vqe_output, vqe_plot]
|
358 |
+
)
|
359 |
+
|
360 |
+
# QAOA Tab
|
361 |
+
with gr.TabItem("π― QAOA Optimization"):
|
362 |
+
gr.Markdown("### Quantum Approximate Optimization Algorithm")
|
363 |
+
with gr.Row():
|
364 |
+
with gr.Column():
|
365 |
+
qaoa_qubits = gr.Slider(2, 4, value=3, step=1, label="Number of Qubits")
|
366 |
+
qaoa_layers = gr.Slider(1, 5, value=2, step=1, label="Number of Layers")
|
367 |
+
qaoa_button = gr.Button("Optimize QAOA", variant="primary")
|
368 |
+
|
369 |
+
with gr.Column():
|
370 |
+
qaoa_output = gr.Textbox(label="Results", lines=10)
|
371 |
+
qaoa_plot = gr.Image(label="Visualization")
|
372 |
|
373 |
+
qaoa_button.click(
|
374 |
+
interface.optimize_qaoa,
|
375 |
+
inputs=[qaoa_qubits, qaoa_layers],
|
376 |
+
outputs=[qaoa_output, qaoa_plot]
|
377 |
+
)
|
378 |
+
|
379 |
+
# Error Mitigation Tab
|
380 |
+
with gr.TabItem("π‘οΈ Error Mitigation"):
|
381 |
+
gr.Markdown("### Quantum Error Correction")
|
382 |
+
with gr.Row():
|
383 |
+
with gr.Column():
|
384 |
+
error_qubits = gr.Slider(2, 5, value=3, step=1, label="Number of Qubits")
|
385 |
+
noise_level = gr.Slider(0.0, 0.5, value=0.1, step=0.01, label="Noise Level")
|
386 |
+
error_button = gr.Button("Apply Error Mitigation", variant="primary")
|
387 |
+
|
388 |
+
with gr.Column():
|
389 |
+
error_output = gr.Textbox(label="Results", lines=10)
|
390 |
+
error_plot = gr.Image(label="Visualization")
|
391 |
+
|
392 |
+
error_button.click(
|
393 |
+
interface.demonstrate_error_mitigation,
|
394 |
+
inputs=[error_qubits, noise_level],
|
395 |
+
outputs=[error_output, error_plot]
|
396 |
+
)
|
397 |
+
|
398 |
+
# Resource Management Tab
|
399 |
+
with gr.TabItem("β‘ Resource Management"):
|
400 |
+
gr.Markdown("### Quantum Resource Optimization")
|
401 |
+
with gr.Row():
|
402 |
+
with gr.Column():
|
403 |
+
num_circuits = gr.Slider(3, 20, value=10, step=1, label="Number of Circuits")
|
404 |
+
max_qubits = gr.Slider(2, 10, value=5, step=1, label="Max Qubits per Circuit")
|
405 |
+
available_qubits = gr.Slider(5, 20, value=10, step=1, label="Available Qubits")
|
406 |
+
resource_button = gr.Button("Optimize Resources", variant="primary")
|
407 |
+
|
408 |
+
with gr.Column():
|
409 |
+
resource_output = gr.Textbox(label="Results", lines=10)
|
410 |
+
resource_plot = gr.Image(label="Visualization")
|
411 |
+
|
412 |
+
resource_button.click(
|
413 |
+
interface.optimize_resources,
|
414 |
+
inputs=[num_circuits, max_qubits, available_qubits],
|
415 |
+
outputs=[resource_output, resource_plot]
|
416 |
+
)
|
417 |
+
|
418 |
+
# Hybrid Processing Tab
|
419 |
+
with gr.TabItem("π Hybrid Processing"):
|
420 |
+
gr.Markdown("### Quantum-Classical Hybrid Algorithms")
|
421 |
+
with gr.Row():
|
422 |
+
with gr.Column():
|
423 |
+
data_size = gr.Slider(10, 100, value=50, step=5, label="Data Size")
|
424 |
+
quantum_component = gr.Dropdown(
|
425 |
+
["quantum_kernel", "quantum_feature_map", "quantum_neural_layer"],
|
426 |
+
value="quantum_kernel",
|
427 |
+
label="Quantum Component"
|
428 |
+
)
|
429 |
+
hybrid_button = gr.Button("Run Hybrid Processing", variant="primary")
|
430 |
+
|
431 |
+
with gr.Column():
|
432 |
+
hybrid_output = gr.Textbox(label="Results", lines=10)
|
433 |
+
hybrid_plot = gr.Image(label="Visualization")
|
434 |
+
|
435 |
+
hybrid_button.click(
|
436 |
+
interface.hybrid_processing_demo,
|
437 |
+
inputs=[data_size, quantum_component],
|
438 |
+
outputs=[hybrid_output, hybrid_plot]
|
439 |
+
)
|
440 |
+
|
441 |
+
gr.Markdown("""
|
442 |
+
---
|
443 |
+
### About
|
444 |
+
This Quantum AI Agent demonstrates the integration of classical AI techniques with quantum computing algorithms.
|
445 |
+
It showcases optimization strategies for VQE and QAOA, error mitigation using neural networks,
|
446 |
+
intelligent resource management, and hybrid quantum-classical processing.
|
447 |
+
|
448 |
+
**Note**: This is a simulation for demonstration purposes. Real quantum hardware integration would require
|
449 |
+
additional components and API connections.
|
450 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
+
return demo
|
453 |
+
|
454 |
+
if __name__ == "__main__":
|
455 |
+
demo = create_interface()
|
456 |
+
demo.launch(
|
457 |
+
server_name="0.0.0.0",
|
458 |
+
server_port=7860,
|
459 |
+
share=True
|
460 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|