import numpy as np import torch import torch.nn as nn import torch.optim as optim from typing import Dict, List, Tuple, Any, Optional import logging from dataclasses import dataclass from scipy.optimize import minimize import json logger = logging.getLogger(__name__) @dataclass class QuantumState: """Represents a quantum state.""" amplitudes: np.ndarray num_qubits: int fidelity: float = 1.0 def __post_init__(self): """Normalize amplitudes after initialization.""" self.amplitudes = self.amplitudes / np.linalg.norm(self.amplitudes) @dataclass class QuantumCircuit: """Represents a quantum circuit.""" gates: List[str] parameters: np.ndarray num_qubits: int depth: int def __post_init__(self): """Initialize circuit properties.""" if len(self.gates) == 0: # Generate some default gates for demonstration gate_types = ['RX', 'RY', 'RZ', 'CNOT', 'H'] self.gates = [np.random.choice(gate_types) for _ in range(self.depth)] class QuantumNeuralNetwork(nn.Module): """Neural network for quantum parameter optimization.""" def __init__(self, input_dim: int, hidden_dim: int = 64, output_dim: int = 1): super().__init__() self.network = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, output_dim) ) def forward(self, x): return self.network(x) class ErrorMitigationNetwork(nn.Module): """Neural network for quantum error mitigation.""" def __init__(self, state_dim: int, hidden_dim: int = 128): super().__init__() self.encoder = nn.Sequential( nn.Linear(state_dim * 2, hidden_dim), # *2 for real and imaginary parts nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU() ) self.decoder = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, state_dim * 2), nn.Tanh() ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded class QuantumAIAgent: """AI agent for quantum computing optimization.""" def __init__(self): """Initialize the quantum AI agent.""" self.optimization_history = [] self.error_mitigation_net = None self.parameter_optimizer = None logger.info("QuantumAIAgent initialized") def optimize_quantum_algorithm(self, algorithm: str, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]: """Optimize quantum algorithm parameters.""" logger.info(f"Optimizing {algorithm} algorithm") if algorithm == "VQE": return self._optimize_vqe(hamiltonian, initial_params) elif algorithm == "QAOA": return self._optimize_qaoa(hamiltonian, initial_params) else: raise ValueError(f"Unknown algorithm: {algorithm}") def _optimize_vqe(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]: """Optimize VQE parameters.""" def objective(params): # Simulate VQE energy calculation # In practice, this would involve quantum circuit simulation circuit_result = self._simulate_vqe_circuit(params, hamiltonian) return circuit_result # Use classical optimization result = minimize(objective, initial_params, method='BFGS') # Create optimal circuit optimal_circuit = QuantumCircuit( gates=[], parameters=result.x, num_qubits=int(np.log2(hamiltonian.shape[0])), depth=len(result.x) // 2 ) return { 'ground_state_energy': result.fun, 'optimization_success': result.success, 'iterations': result.nit, 'optimal_parameters': result.x, 'optimal_circuit': optimal_circuit } def _optimize_qaoa(self, hamiltonian: np.ndarray, initial_params: np.ndarray) -> Dict[str, Any]: """Optimize QAOA parameters.""" num_layers = len(initial_params) // 2 def objective(params): beta = params[:num_layers] gamma = params[num_layers:] return self._simulate_qaoa_circuit(beta, gamma, hamiltonian) result = minimize(objective, initial_params, method='COBYLA') return { 'optimal_value': -result.fun, # Minimize negative for maximization 'optimization_success': result.success, 'iterations': result.nit, 'optimal_beta': result.x[:num_layers], 'optimal_gamma': result.x[num_layers:] } def _simulate_vqe_circuit(self, params: np.ndarray, hamiltonian: np.ndarray) -> float: """Simulate VQE circuit and return energy expectation.""" # Simplified simulation - create parameterized state num_qubits = int(np.log2(hamiltonian.shape[0])) # Create a parameterized quantum state (simplified) angles = params[:num_qubits] state = np.zeros(2**num_qubits, dtype=complex) # Simple parameterization: each qubit gets a rotation for i in range(2**num_qubits): amplitude = 1.0 for q in range(num_qubits): if (i >> q) & 1: amplitude *= np.sin(angles[q % len(angles)]) else: amplitude *= np.cos(angles[q % len(angles)]) state[i] = amplitude # Normalize state = state / np.linalg.norm(state) # Calculate expectation value energy = np.real(np.conj(state).T @ hamiltonian @ state) return energy def _simulate_qaoa_circuit(self, beta: np.ndarray, gamma: np.ndarray, hamiltonian: np.ndarray) -> float: """Simulate QAOA circuit and return objective value.""" # Simplified QAOA simulation num_qubits = int(np.log2(hamiltonian.shape[0])) # Start with uniform superposition state = np.ones(2**num_qubits, dtype=complex) / np.sqrt(2**num_qubits) # Apply QAOA layers (simplified) for i in range(len(beta)): # Problem Hamiltonian evolution (simplified) phase_factors = np.exp(-1j * gamma[i] * np.diag(hamiltonian)) state = phase_factors * state # Mixer Hamiltonian evolution (simplified X rotations) # This is a very simplified version for q in range(num_qubits): # Apply rotation (simplified) rotation_factor = np.cos(beta[i]) + 1j * np.sin(beta[i]) state = state * rotation_factor # Normalize state = state / np.linalg.norm(state) # Calculate expectation value expectation = np.real(np.conj(state).T @ hamiltonian @ state) return -expectation # Return negative for minimization def mitigate_errors(self, quantum_state: QuantumState, noise_model: Dict[str, Any]) -> QuantumState: """Apply AI-powered error mitigation.""" logger.info("Applying error mitigation") # Initialize error mitigation network if not exists if self.error_mitigation_net is None: state_dim = len(quantum_state.amplitudes) self.error_mitigation_net = ErrorMitigationNetwork(state_dim) # Convert quantum state to real input (real and imaginary parts) state_real = np.real(quantum_state.amplitudes) state_imag = np.imag(quantum_state.amplitudes) input_data = np.concatenate([state_real, state_imag]) # Apply noise simulation noise_factor = noise_model.get('noise_factor', 0.1) noisy_input = input_data + np.random.normal(0, noise_factor, input_data.shape) # Apply error mitigation (simplified - in practice would be trained) with torch.no_grad(): input_tensor = torch.FloatTensor(noisy_input).unsqueeze(0) corrected_output = self.error_mitigation_net(input_tensor).squeeze(0).numpy() # Convert back to complex amplitudes mid_point = len(corrected_output) // 2 corrected_real = corrected_output[:mid_point] corrected_imag = corrected_output[mid_point:] corrected_amplitudes = corrected_real + 1j * corrected_imag # Normalize corrected_amplitudes = corrected_amplitudes / np.linalg.norm(corrected_amplitudes) # Calculate improved fidelity original_fidelity = quantum_state.fidelity fidelity_improvement = min(0.1, noise_factor * 0.5) # Simplified improvement new_fidelity = min(1.0, original_fidelity + fidelity_improvement) return QuantumState( amplitudes=corrected_amplitudes, num_qubits=quantum_state.num_qubits, fidelity=new_fidelity ) def optimize_resources(self, circuits: List[QuantumCircuit], available_qubits: int) -> Dict[str, Any]: """Optimize quantum resource allocation.""" logger.info(f"Optimizing resources for {len(circuits)} circuits with {available_qubits} qubits") # Simple scheduling algorithm schedule = [] current_time = 0 total_qubits_used = 0 # Sort circuits by qubit requirement (First-Fit Decreasing) sorted_circuits = sorted(enumerate(circuits), key=lambda x: x[1].num_qubits, reverse=True) for circuit_id, circuit in sorted_circuits: if circuit.num_qubits <= available_qubits: # Estimate execution time based on circuit depth estimated_duration = circuit.depth * 0.1 # 0.1 time units per gate schedule.append({ 'circuit_id': circuit_id, 'qubits_allocated': circuit.num_qubits, 'start_time': current_time, 'estimated_duration': estimated_duration }) current_time += estimated_duration total_qubits_used += circuit.num_qubits # Calculate resource utilization max_possible_qubits = len(circuits) * available_qubits resource_utilization = total_qubits_used / max_possible_qubits if max_possible_qubits > 0 else 0 return { 'schedule': schedule, 'resource_utilization': resource_utilization, 'estimated_runtime': current_time, 'circuits_scheduled': len(schedule) } def hybrid_processing(self, classical_data: np.ndarray, quantum_component: str) -> Dict[str, Any]: """Perform hybrid quantum-classical processing.""" logger.info(f"Running hybrid processing with {quantum_component}") # Preprocess classical data preprocessed_data = self._preprocess_classical_data(classical_data) # Apply quantum component if quantum_component == "quantum_kernel": quantum_result = self._apply_quantum_kernel(preprocessed_data) elif quantum_component == "quantum_feature_map": quantum_result = self._apply_quantum_feature_map(preprocessed_data) elif quantum_component == "quantum_neural_layer": quantum_result = self._apply_quantum_neural_layer(preprocessed_data) else: raise ValueError(f"Unknown quantum component: {quantum_component}") # Post-process results final_result = self._postprocess_quantum_result(quantum_result) return { 'preprocessed_data': preprocessed_data, 'quantum_result': quantum_result, 'final_result': final_result } def _preprocess_classical_data(self, data: np.ndarray) -> np.ndarray: """Preprocess classical data for quantum processing.""" # Normalize data normalized_data = (data - np.mean(data)) / (np.std(data) + 1e-8) # Apply some classical preprocessing processed_data = np.tanh(normalized_data) # Squash to [-1, 1] return processed_data def _apply_quantum_kernel(self, data: np.ndarray) -> np.ndarray: """Apply quantum kernel transformation.""" # Simulate quantum kernel computation # In practice, this would involve quantum feature maps kernel_matrix = np.zeros((len(data), len(data))) for i in range(len(data)): for j in range(len(data)): # Simplified quantum kernel (RBF-like with quantum enhancement) diff = data[i] - data[j] quantum_enhancement = np.cos(np.pi * diff) * np.exp(-0.5 * diff**2) kernel_matrix[i, j] = quantum_enhancement return kernel_matrix def _apply_quantum_feature_map(self, data: np.ndarray) -> np.ndarray: """Apply quantum feature map.""" # Simulate quantum feature mapping num_features = len(data) quantum_features = np.zeros(num_features * 2) # Expand feature space for i, x in enumerate(data): # Simulate quantum feature encoding quantum_features[2*i] = np.cos(np.pi * x) quantum_features[2*i + 1] = np.sin(np.pi * x) return quantum_features def _apply_quantum_neural_layer(self, data: np.ndarray) -> np.ndarray: """Apply quantum neural network layer.""" # Simulate quantum neural network layer output_size = len(data) quantum_output = np.zeros(output_size) # Simplified quantum neural transformation for i, x in enumerate(data): # Simulate parameterized quantum circuit theta = x * np.pi / 4 # Parameter encoding quantum_output[i] = np.cos(theta) * np.exp(-0.1 * x**2) return quantum_output def _postprocess_quantum_result(self, quantum_result: np.ndarray) -> Dict[str, Any]: """Post-process quantum results.""" # Calculate statistics stats = { 'mean': np.mean(quantum_result), 'std': np.std(quantum_result), 'min': np.min(quantum_result), 'max': np.max(quantum_result) } # Calculate confidence (simplified) confidence = 1.0 - np.std(quantum_result) / (np.abs(np.mean(quantum_result)) + 1e-8) confidence = max(0, min(1, confidence)) return { 'statistics': stats, 'confidence': confidence, 'processed_data': quantum_result }