Spaces:
Running
Running
File size: 15,164 Bytes
985d262 e0ad59e 985d262 befd746 6f97cb7 befd746 985d262 e0ad59e 985d262 e0ad59e befd746 6f97cb7 e0ad59e 985d262 e0ad59e 985d262 befd746 6f97cb7 e0ad59e 6f97cb7 e0ad59e befd746 985d262 6f97cb7 985d262 6f97cb7 985d262 6f97cb7 985d262 6f97cb7 985d262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import requests
import json
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import traceback
import plotly.express as px
import plotly.graph_objects as go
class NasaSsdCneosApi:
def __init__(self):
self.fireball_url = "https://ssd-api.jpl.nasa.gov/fireball.api"
self.ca_url = "https://ssd-api.jpl.nasa.gov/cad.api"
self.nea_url = "https://ssd-api.jpl.nasa.gov/sbdb_query.api"
self.scout_url = "https://ssd-api.jpl.nasa.gov/scout.api"
def get_fireballs(self, limit=10, date_min=None, energy_min=None):
try:
params = {'limit': limit}
if date_min:
params['date-min'] = date_min
if energy_min:
params['energy-min'] = energy_min
response = requests.get(self.fireball_url, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
print("Fireball API Error:", e)
traceback.print_exc()
return None
def get_close_approaches(self, dist_max=None, date_min=None, date_max=None,
h_min=None, h_max=None, v_inf_min=None, v_inf_max=None,
limit=10):
try:
params = {'limit': limit, 'dist-max': dist_max, 'date-min': date_min,
'date-max': date_max, 'h-min': h_min, 'h-max': h_max,
'v-inf-min': v_inf_min, 'v-inf-max': v_inf_max, 'sort': 'date'}
params = {k: v for k, v in params.items() if v is not None}
response = requests.get(self.ca_url, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
print("Close Approaches API Error:", e)
traceback.print_exc()
return None
def get_nea_data(self, des=None, spk_id=None, h_max=None):
try:
# Build query parameter for NEAs - select asteroid with NEA flag
query_params = {
'sb-nea': 'true' # Filter for Near-Earth Asteroids
}
if des:
query_params['sb-spk'] = des
if spk_id:
query_params['sb-spkid'] = spk_id
if h_max:
query_params['sb-h-max'] = h_max
# Add fields to return
query_params['fields'] = 'spkid,full_name,pdes,neo,H,G,diameter,extent,albedo,rot_per,GM,BV,UB,IR,spec_B,spec_T,H_sigma,diameter_sigma,orbit_id,epoch,epoch_mjd,epoch_cal,a,e,i,om,w,ma,ad,n,tp,tp_cal,per,per_y,q,moid,moid_ld,moid_jup'
query_params['limit'] = 100 # Set a reasonable limit
response = requests.get(self.nea_url, params=query_params)
response.raise_for_status()
return response.json()
except Exception as e:
print("NEA API Error:", e)
traceback.print_exc()
return None
def get_scout_data(self, limit=10, nea_comet="NEA"):
try:
params = {'limit': limit}
if nea_comet:
params['nea-comet'] = nea_comet.lower()
response = requests.get(self.scout_url, params=params)
response.raise_for_status()
return response.json()
except Exception as e:
print("Scout API Error:", e)
traceback.print_exc()
return None
def format_response(self, data, format_type):
try:
if not data:
return None
fields = data.get('fields')
rows = data.get('data')
if not fields or not rows:
return None
df = pd.DataFrame([dict(zip(fields, row)) for row in rows])
if format_type == 'fireballs':
return df.rename(columns={
'date': 'Date/Time', 'energy': 'Energy (kt)',
'impact-e': 'Impact Energy (10^10 J)', 'lat': 'Latitude',
'lon': 'Longitude', 'alt': 'Altitude (km)',
'vel': 'Velocity (km/s)'
})
elif format_type == 'close_approaches':
return df.rename(columns={
'des': 'Object', 'orbit_id': 'Orbit ID', 'cd': 'Time (TDB)',
'dist': 'Nominal Distance (au)', 'dist_min': 'Minimum Distance (au)',
'dist_max': 'Maximum Distance (au)', 'v_rel': 'Velocity (km/s)',
'h': 'H (mag)'
})
elif format_type == 'nea':
name_columns = {
'full_name': 'Full Name', 'pdes': 'Designation',
'H': 'Absolute Magnitude (mag)', 'diameter': 'Diameter (km)',
'q': 'Perihelion (au)', 'ad': 'Aphelion (au)',
'i': 'Inclination (deg)', 'e': 'Eccentricity',
'moid': 'MOID (au)', 'moid_ld': 'MOID (LD)'
}
# Use only columns that exist in the dataframe
valid_columns = {k: v for k, v in name_columns.items() if k in df.columns}
return df.rename(columns=valid_columns)
elif format_type == 'scout':
# Handle Scout API response - column names may vary
# Adjust these column mappings based on actual response structure
if 'score' in df.columns:
df = df.rename(columns={
'object': 'Object', 'score': 'Rating',
'diameter': 'Diameter (m)', 'ca_dist': 'Close Approach',
'nobs': 'Observations'
})
return df
return df
except Exception as e:
print("Data formatting error:", e)
traceback.print_exc()
return None
# Gradio Interface Functions
def fetch_fireballs(limit, date_min, energy_min):
api = NasaSsdCneosApi()
# Convert empty strings to None
date_min = date_min if date_min else None
energy_min = float(energy_min) if energy_min else None
data = api.get_fireballs(
limit=int(limit),
date_min=date_min,
energy_min=energy_min
)
df = api.format_response(data, 'fireballs')
if df is None or df.empty:
return "No data available", None
# Create world map of fireballs
if 'Latitude' in df.columns and 'Longitude' in df.columns:
fig = px.scatter_geo(df,
lat='Latitude',
lon='Longitude',
size='Energy (kt)',
hover_name='Date/Time',
projection='natural earth',
title='Fireball Events')
return df, fig
return df, None
def fetch_close_approaches(limit, dist_max, date_min, date_max, h_min, h_max, v_inf_min, v_inf_max):
api = NasaSsdCneosApi()
# Convert empty strings to None
dist_max = float(dist_max) if dist_max else None
date_min = date_min if date_min else None
date_max = date_max if date_max else None
h_min = float(h_min) if h_min else None
h_max = float(h_max) if h_max else None
v_inf_min = float(v_inf_min) if v_inf_min else None
v_inf_max = float(v_inf_max) if v_inf_max else None
data = api.get_close_approaches(
limit=int(limit),
dist_max=dist_max,
date_min=date_min,
date_max=date_max,
h_min=h_min,
h_max=h_max,
v_inf_min=v_inf_min,
v_inf_max=v_inf_max
)
df = api.format_response(data, 'close_approaches')
if df is None or df.empty:
return "No data available", None
# Create scatter plot of distance vs velocity
fig = px.scatter(df,
x='Nominal Distance (au)',
y='Velocity (km/s)',
hover_name='Object',
size='H (mag)',
color='H (mag)',
title='Close Approaches - Distance vs Velocity')
return df, fig
def fetch_nea_data(des, spk_id, h_max):
api = NasaSsdCneosApi()
# Convert empty strings to None
des = des if des else None
spk_id = spk_id if spk_id else None
h_max = float(h_max) if h_max else None
data = api.get_nea_data(
des=des,
spk_id=spk_id,
h_max=h_max
)
df = api.format_response(data, 'nea')
if df is None or df.empty:
return "No data available", None
# Create a scatter plot of perihelion vs aphelion colored by inclination
if not df.empty and 'Perihelion (au)' in df.columns and 'Aphelion (au)' in df.columns:
fig = px.scatter(df,
x='Perihelion (au)',
y='Aphelion (au)',
hover_name='Designation' if 'Designation' in df.columns else None,
color='Inclination (deg)' if 'Inclination (deg)' in df.columns else None,
size='Diameter (km)' if 'Diameter (km)' in df.columns else None,
title='NEA Orbital Parameters')
return df, fig
return df, None
def fetch_scout_data(limit, nea_comet):
api = NasaSsdCneosApi()
data = api.get_scout_data(
limit=int(limit),
nea_comet=nea_comet
)
df = api.format_response(data, 'scout')
if df is None or df.empty:
return "No data available", None
# Create a scatter plot based on available columns
if not df.empty:
# Use columns that are available in the dataframe
x_col = 'Diameter (m)' if 'Diameter (m)' in df.columns else df.columns[0]
y_col = 'Close Approach' if 'Close Approach' in df.columns else df.columns[1]
hover_col = 'Object' if 'Object' in df.columns else None
color_col = 'Rating' if 'Rating' in df.columns else None
size_col = 'Observations' if 'Observations' in df.columns else None
fig = px.scatter(df,
x=x_col,
y=y_col,
hover_name=hover_col,
color=color_col,
size=size_col,
title='Scout Objects')
return df, fig
return df, None
# Create Gradio interface
with gr.Blocks(title="NASA SSD/CNEOS API Explorer") as demo:
gr.Markdown("# NASA SSD/CNEOS API Explorer")
gr.Markdown("Access data from NASA's Center for Near Earth Object Studies")
with gr.Tab("Fireballs"):
gr.Markdown("### Fireball Events")
gr.Markdown("Get information about recent fireball events detected by sensors.")
with gr.Row():
with gr.Column():
fireball_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
fireball_date = gr.Textbox(label="Minimum Date (YYYY-MM-DD)", placeholder="e.g. 2023-01-01")
fireball_energy = gr.Textbox(label="Minimum Energy (kt)", placeholder="e.g. 0.5")
fireball_submit = gr.Button("Fetch Fireballs")
with gr.Column():
fireball_results = gr.DataFrame(label="Fireball Results")
fireball_map = gr.Plot(label="Fireball Map")
fireball_submit.click(fetch_fireballs, inputs=[fireball_limit, fireball_date, fireball_energy], outputs=[fireball_results, fireball_map])
with gr.Tab("Close Approaches"):
gr.Markdown("### Close Approaches")
gr.Markdown("Get information about close approaches of near-Earth objects.")
with gr.Row():
with gr.Column():
ca_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
ca_dist_max = gr.Textbox(label="Maximum Distance (AU)", placeholder="e.g. 0.05")
ca_date_min = gr.Textbox(label="Minimum Date (YYYY-MM-DD)", placeholder="e.g. 2023-01-01")
ca_date_max = gr.Textbox(label="Maximum Date (YYYY-MM-DD)", placeholder="e.g. 2023-12-31")
ca_h_min = gr.Textbox(label="Minimum H (mag)", placeholder="e.g. 20")
ca_h_max = gr.Textbox(label="Maximum H (mag)", placeholder="e.g. 30")
ca_v_min = gr.Textbox(label="Minimum Velocity (km/s)", placeholder="e.g. 10")
ca_v_max = gr.Textbox(label="Maximum Velocity (km/s)", placeholder="e.g. 30")
ca_submit = gr.Button("Fetch Close Approaches")
with gr.Column():
ca_results = gr.DataFrame(label="Close Approach Results")
ca_plot = gr.Plot(label="Close Approach Plot")
ca_submit.click(fetch_close_approaches,
inputs=[ca_limit, ca_dist_max, ca_date_min, ca_date_max, ca_h_min, ca_h_max, ca_v_min, ca_v_max],
outputs=[ca_results, ca_plot])
with gr.Tab("NEA Data"):
gr.Markdown("### Near-Earth Asteroid Data")
gr.Markdown("Get information about specific near-Earth asteroids.")
with gr.Row():
with gr.Column():
nea_des = gr.Textbox(label="Designation", placeholder="e.g. 2020 SW")
nea_spk = gr.Textbox(label="SPK-ID", placeholder="e.g. 54101815")
nea_h_max = gr.Textbox(label="Maximum H (mag)", placeholder="e.g. 25")
nea_submit = gr.Button("Fetch NEA Data")
with gr.Column():
nea_results = gr.DataFrame(label="NEA Results")
nea_plot = gr.Plot(label="NEA Orbital Parameters")
nea_submit.click(fetch_nea_data, inputs=[nea_des, nea_spk, nea_h_max], outputs=[nea_results, nea_plot])
with gr.Tab("Scout Data"):
gr.Markdown("### Scout System Data")
gr.Markdown("Get information about newly discovered objects from NASA's Scout system.")
with gr.Row():
with gr.Column():
scout_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
scout_type = gr.Radio(["NEA", "comet"], label="Object Type", value="NEA")
scout_submit = gr.Button("Fetch Scout Data")
with gr.Column():
scout_results = gr.DataFrame(label="Scout Results")
scout_plot = gr.Plot(label="Scout Objects Plot")
scout_submit.click(fetch_scout_data, inputs=[scout_limit, scout_type], outputs=[scout_results, scout_plot])
gr.Markdown("### About")
gr.Markdown("""
This application provides access to NASA's Solar System Dynamics (SSD) and Center for Near Earth Object Studies (CNEOS) API.
Data is retrieved in real-time from NASA's servers. All data is courtesy of NASA/JPL-Caltech.
Created by [Your Name] using Gradio and Hugging Face Spaces.
""")
# Create requirements.txt file
requirements = """
gradio>=3.50.0
pandas>=1.5.0
plotly>=5.14.0
requests>=2.28.0
"""
with open("requirements.txt", "w") as f:
f.write(requirements)
if __name__ == "__main__":
demo.launch() |