Spaces:
Running
Running
File size: 14,371 Bytes
985d262 e0ad59e 985d262 7785b41 985d262 befd746 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 985d262 6f97cb7 7785b41 6f97cb7 7785b41 6f97cb7 7785b41 6f97cb7 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e 6f97cb7 7785b41 e0ad59e 7785b41 e0ad59e 7785b41 e0ad59e befd746 985d262 7785b41 985d262 7785b41 985d262 7785b41 985d262 7785b41 985d262 7785b41 6f97cb7 7785b41 985d262 7785b41 985d262 7785b41 985d262 7785b41 985d262 7785b41 985d262 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import requests
import json
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import traceback
import plotly.express as px
import plotly.graph_objects as go
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class NasaSsdCneosApi:
def __init__(self):
self.fireball_url = "https://ssd-api.jpl.nasa.gov/fireball.api"
self.ca_url = "https://ssd-api.jpl.nasa.gov/cad.api"
# For debugging - print response details if True
self.debug_mode = True
def _make_api_request(self, url, params, name="API"):
"""Generic API request handler with error handling and debugging"""
try:
# Clean up None values and empty strings
clean_params = {k: v for k, v in params.items() if v is not None and v != ""}
# Log the request in debug mode
if self.debug_mode:
logger.info(f"{name} Request - URL: {url}")
logger.info(f"{name} Request - Params: {clean_params}")
# Make the request
response = requests.get(url, params=clean_params)
# Log the response status and content in debug mode
if self.debug_mode:
logger.info(f"{name} Response - Status: {response.status_code}")
logger.info(f"{name} Response - Content Preview: {response.text[:500]}...")
# Check for HTTP errors
response.raise_for_status()
# Parse JSON response
data = response.json()
# Check for API-specific error messages
if isinstance(data, dict) and "error" in data:
logger.error(f"{name} API Error: {data['error']}")
return None
return data
except requests.exceptions.HTTPError as http_err:
logger.error(f"{name} HTTP Error: {http_err}")
if self.debug_mode and hasattr(http_err, 'response'):
logger.error(f"Response content: {http_err.response.text}")
return None
except json.JSONDecodeError as json_err:
logger.error(f"{name} JSON Decode Error: {json_err}")
if self.debug_mode and 'response' in locals():
logger.error(f"Raw response: {response.text}")
return None
except Exception as e:
logger.error(f"{name} General Error: {e}")
traceback.print_exc()
return None
def get_fireballs(self, limit=10, date_min=None, energy_min=None):
"""Get fireball events from NASA CNEOS API"""
params = {'limit': limit}
if date_min:
params['date-min'] = date_min
if energy_min:
params['energy-min'] = energy_min
return self._make_api_request(self.fireball_url, params, "Fireball API")
def get_close_approaches(self, dist_max=None, date_min=None, date_max=None,
h_min=None, h_max=None, v_inf_min=None, v_inf_max=None,
limit=10):
"""Get close approach data from NASA CNEOS API"""
params = {
'limit': limit,
'dist-max': dist_max,
'date-min': date_min,
'date-max': date_max,
'h-min': h_min,
'h-max': h_max,
'v-inf-min': v_inf_min,
'v-inf-max': v_inf_max,
'sort': 'date'
}
return self._make_api_request(self.ca_url, params, "Close Approaches API")
def format_response(self, data, format_type):
"""Format JSON response from API into a pandas DataFrame"""
try:
if not data:
logger.warning(f"No data received for {format_type} format")
return None
# Some API responses use 'signature' field instead of 'fields'
fields = data.get('fields', data.get('signature'))
rows = data.get('data')
if not fields or not rows:
logger.warning(f"Missing fields or data rows for {format_type} format")
logger.debug(f"Data structure: {data.keys()}")
return None
# Create DataFrame from the API response
df = pd.DataFrame([dict(zip(fields, row)) for row in rows])
if df.empty:
logger.warning(f"Empty DataFrame created for {format_type}")
return None
# Log available columns for debugging
if self.debug_mode:
logger.info(f"Available columns in {format_type} response: {df.columns.tolist()}")
# Format based on data type
if format_type == 'fireballs':
# Only rename columns that exist in the DataFrame
rename_map = {
'date': 'Date/Time',
'energy': 'Energy (kt)',
'impact-e': 'Impact Energy (10^10 J)',
'lat': 'Latitude',
'lon': 'Longitude',
'alt': 'Altitude (km)',
'vel': 'Velocity (km/s)'
}
# Filter rename map to only include columns that exist
valid_rename = {k: v for k, v in rename_map.items() if k in df.columns}
return df.rename(columns=valid_rename)
elif format_type == 'close_approaches':
rename_map = {
'des': 'Object',
'orbit_id': 'Orbit ID',
'cd': 'Time (TDB)',
'dist': 'Nominal Distance (au)',
'dist_min': 'Minimum Distance (au)',
'dist_max': 'Maximum Distance (au)',
'v_rel': 'Velocity (km/s)',
'h': 'H (mag)'
}
valid_rename = {k: v for k, v in rename_map.items() if k in df.columns}
return df.rename(columns=valid_rename)
return df
except Exception as e:
logger.error(f"Data formatting error for {format_type}: {e}")
traceback.print_exc()
return None
# Gradio Interface Functions with better error handling
def fetch_fireballs(limit, date_min, energy_min):
"""Fetch fireball data for Gradio interface"""
try:
api = NasaSsdCneosApi()
# Process inputs
date_min = date_min.strip() if date_min else None
try:
energy_min = float(energy_min) if energy_min else None
except ValueError:
return f"Error: Invalid energy value '{energy_min}'. Please enter a valid number.", None
data = api.get_fireballs(
limit=int(limit),
date_min=date_min,
energy_min=energy_min
)
if not data:
return "No data returned from API. There might be an issue with the connection or parameters.", None
df = api.format_response(data, 'fireballs')
if df is None or df.empty:
return "No fireball data available for the specified parameters.", None
# Create world map of fireballs
if 'Latitude' in df.columns and 'Longitude' in df.columns:
try:
# Create size column if Energy (kt) is not available
size_col = 'Energy (kt)' if 'Energy (kt)' in df.columns else None
fig = px.scatter_geo(df,
lat='Latitude',
lon='Longitude',
size=size_col,
hover_name='Date/Time' if 'Date/Time' in df.columns else None,
projection='natural earth',
title='Fireball Events')
return df, fig
except Exception as plot_err:
logger.error(f"Error creating fireball plot: {plot_err}")
return df, None
return df, None
except Exception as e:
logger.error(f"Error in fetch_fireballs: {e}")
traceback.print_exc()
return f"An error occurred: {str(e)}", None
def fetch_close_approaches(limit, dist_max, date_min, date_max, h_min, h_max, v_inf_min, v_inf_max):
"""Fetch close approach data for Gradio interface"""
try:
api = NasaSsdCneosApi()
# Process inputs with error handling
try:
dist_max = float(dist_max) if dist_max else None
h_min = float(h_min) if h_min else None
h_max = float(h_max) if h_max else None
v_inf_min = float(v_inf_min) if v_inf_min else None
v_inf_max = float(v_inf_max) if v_inf_max else None
except ValueError as ve:
return f"Error: Invalid numeric input - {str(ve)}", None
date_min = date_min.strip() if date_min else None
date_max = date_max.strip() if date_max else None
data = api.get_close_approaches(
limit=int(limit),
dist_max=dist_max,
date_min=date_min,
date_max=date_max,
h_min=h_min,
h_max=h_max,
v_inf_min=v_inf_min,
v_inf_max=v_inf_max
)
if not data:
return "No data returned from API. There might be an issue with the connection or parameters.", None
df = api.format_response(data, 'close_approaches')
if df is None or df.empty:
return "No close approach data available for the specified parameters.", None
# Create scatter plot
try:
x_col = 'Nominal Distance (au)' if 'Nominal Distance (au)' in df.columns else df.columns[0]
y_col = 'Velocity (km/s)' if 'Velocity (km/s)' in df.columns else df.columns[1]
hover_col = 'Object' if 'Object' in df.columns else None
size_col = 'H (mag)' if 'H (mag)' in df.columns else None
color_col = 'H (mag)' if 'H (mag)' in df.columns else None
fig = px.scatter(df,
x=x_col,
y=y_col,
hover_name=hover_col,
size=size_col,
color=color_col,
title='Close Approaches - Distance vs Velocity')
return df, fig
except Exception as plot_err:
logger.error(f"Error creating close approach plot: {plot_err}")
return df, None
except Exception as e:
logger.error(f"Error in fetch_close_approaches: {e}")
traceback.print_exc()
return f"An error occurred: {str(e)}", None
# Create Gradio interface
with gr.Blocks(title="NASA SSD/CNEOS API Explorer") as demo:
gr.Markdown("# NASA SSD/CNEOS API Explorer")
gr.Markdown("Access data from NASA's Center for Near Earth Object Studies")
# Error display area
error_box = gr.Textbox(label="Status", visible=True)
with gr.Tab("Fireballs"):
gr.Markdown("### Fireball Events")
gr.Markdown("Get information about recent fireball events detected by sensors.")
with gr.Row():
with gr.Column():
fireball_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
fireball_date = gr.Textbox(label="Minimum Date (YYYY-MM-DD)", placeholder="e.g. 2023-01-01")
fireball_energy = gr.Textbox(label="Minimum Energy (kt)", placeholder="e.g. 0.5")
fireball_submit = gr.Button("Fetch Fireballs")
with gr.Column():
fireball_results = gr.DataFrame(label="Fireball Results")
fireball_map = gr.Plot(label="Fireball Map")
fireball_submit.click(fetch_fireballs,
inputs=[fireball_limit, fireball_date, fireball_energy],
outputs=[fireball_results, fireball_map])
with gr.Tab("Close Approaches"):
gr.Markdown("### Close Approaches")
gr.Markdown("Get information about close approaches of near-Earth objects.")
with gr.Row():
with gr.Column():
ca_limit = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Limit")
ca_dist_max = gr.Textbox(label="Maximum Distance (AU)", placeholder="e.g. 0.05")
ca_date_min = gr.Textbox(label="Minimum Date (YYYY-MM-DD)", placeholder="e.g. 2023-01-01")
ca_date_max = gr.Textbox(label="Maximum Date (YYYY-MM-DD)", placeholder="e.g. 2023-12-31")
ca_h_min = gr.Textbox(label="Minimum H (mag)", placeholder="e.g. 20")
ca_h_max = gr.Textbox(label="Maximum H (mag)", placeholder="e.g. 30")
ca_v_min = gr.Textbox(label="Minimum Velocity (km/s)", placeholder="e.g. 10")
ca_v_max = gr.Textbox(label="Maximum Velocity (km/s)", placeholder="e.g. 30")
ca_submit = gr.Button("Fetch Close Approaches")
with gr.Column():
ca_results = gr.DataFrame(label="Close Approach Results")
ca_plot = gr.Plot(label="Close Approach Plot")
ca_submit.click(fetch_close_approaches,
inputs=[ca_limit, ca_dist_max, ca_date_min, ca_date_max, ca_h_min, ca_h_max, ca_v_min, ca_v_max],
outputs=[ca_results, ca_plot])
gr.Markdown("### About")
gr.Markdown("""
This application provides access to NASA's Solar System Dynamics (SSD) and Center for Near Earth Object Studies (CNEOS) API.
Data is retrieved in real-time from NASA's servers. All data is courtesy of NASA/JPL-Caltech.
Created using Gradio and Hugging Face Spaces.
""")
# Create requirements.txt file
requirements = """
gradio>=3.50.0
pandas>=1.5.0
plotly>=5.14.0
requests>=2.28.0
"""
with open("requirements.txt", "w") as f:
f.write(requirements)
if __name__ == "__main__":
demo.launch() |