Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
from plotly.subplots import make_subplots
|
7 |
+
from sklearn.ensemble import IsolationForest
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
from sklearn.cluster import DBSCAN
|
10 |
+
from scipy import stats
|
11 |
+
from typing import Dict, List, Tuple, Any, Optional
|
12 |
+
import warnings
|
13 |
+
warnings.filterwarnings('ignore')
|
14 |
+
|
15 |
+
class OutlierDetective:
|
16 |
+
def __init__(self):
|
17 |
+
self.df = None
|
18 |
+
self.outlier_results = {}
|
19 |
+
self.numeric_columns = []
|
20 |
+
|
21 |
+
def load_data(self, file_path: str) -> pd.DataFrame:
|
22 |
+
"""Load data from various file formats"""
|
23 |
+
try:
|
24 |
+
if file_path.endswith('.csv'):
|
25 |
+
df = pd.read_csv(file_path, encoding='utf-8')
|
26 |
+
elif file_path.endswith(('.xlsx', '.xls')):
|
27 |
+
df = pd.read_excel(file_path)
|
28 |
+
elif file_path.endswith('.json'):
|
29 |
+
df = pd.read_json(file_path)
|
30 |
+
elif file_path.endswith('.parquet'):
|
31 |
+
df = pd.read_parquet(file_path)
|
32 |
+
else:
|
33 |
+
df = pd.read_csv(file_path)
|
34 |
+
|
35 |
+
self.df = df
|
36 |
+
# Identify numeric columns
|
37 |
+
self.numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
|
38 |
+
return df
|
39 |
+
except Exception as e:
|
40 |
+
raise Exception(f"Error loading file: {str(e)}")
|
41 |
+
|
42 |
+
def detect_iqr_outliers(self, column: str) -> Dict[str, Any]:
|
43 |
+
"""Detect outliers using Interquartile Range (IQR) method"""
|
44 |
+
if column not in self.numeric_columns:
|
45 |
+
return {}
|
46 |
+
|
47 |
+
series = self.df[column].dropna()
|
48 |
+
Q1 = series.quantile(0.25)
|
49 |
+
Q3 = series.quantile(0.75)
|
50 |
+
IQR = Q3 - Q1
|
51 |
+
|
52 |
+
lower_bound = Q1 - 1.5 * IQR
|
53 |
+
upper_bound = Q3 + 1.5 * IQR
|
54 |
+
|
55 |
+
outlier_mask = (series < lower_bound) | (series > upper_bound)
|
56 |
+
outlier_indices = series[outlier_mask].index.tolist()
|
57 |
+
outlier_values = series[outlier_mask].tolist()
|
58 |
+
|
59 |
+
return {
|
60 |
+
'method': 'IQR',
|
61 |
+
'lower_bound': lower_bound,
|
62 |
+
'upper_bound': upper_bound,
|
63 |
+
'outlier_indices': outlier_indices,
|
64 |
+
'outlier_values': outlier_values,
|
65 |
+
'outlier_count': len(outlier_indices),
|
66 |
+
'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
|
67 |
+
'explanation': f"Values below {lower_bound:.2f} or above {upper_bound:.2f} are considered outliers"
|
68 |
+
}
|
69 |
+
|
70 |
+
def detect_zscore_outliers(self, column: str, threshold: float = 3) -> Dict[str, Any]:
|
71 |
+
"""Detect outliers using Z-score method"""
|
72 |
+
if column not in self.numeric_columns:
|
73 |
+
return {}
|
74 |
+
|
75 |
+
series = self.df[column].dropna()
|
76 |
+
z_scores = np.abs(stats.zscore(series))
|
77 |
+
|
78 |
+
outlier_mask = z_scores > threshold
|
79 |
+
outlier_indices = series[outlier_mask].index.tolist()
|
80 |
+
outlier_values = series[outlier_mask].tolist()
|
81 |
+
outlier_zscores = z_scores[outlier_mask].tolist()
|
82 |
+
|
83 |
+
return {
|
84 |
+
'method': 'Z-Score',
|
85 |
+
'threshold': threshold,
|
86 |
+
'outlier_indices': outlier_indices,
|
87 |
+
'outlier_values': outlier_values,
|
88 |
+
'outlier_zscores': outlier_zscores,
|
89 |
+
'outlier_count': len(outlier_indices),
|
90 |
+
'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
|
91 |
+
'explanation': f"Values with |z-score| > {threshold} are considered outliers"
|
92 |
+
}
|
93 |
+
|
94 |
+
def detect_modified_zscore_outliers(self, column: str, threshold: float = 3.5) -> Dict[str, Any]:
|
95 |
+
"""Detect outliers using Modified Z-score (MAD) method"""
|
96 |
+
if column not in self.numeric_columns:
|
97 |
+
return {}
|
98 |
+
|
99 |
+
series = self.df[column].dropna()
|
100 |
+
median = series.median()
|
101 |
+
mad = stats.median_abs_deviation(series)
|
102 |
+
|
103 |
+
if mad == 0:
|
104 |
+
return {
|
105 |
+
'method': 'Modified Z-Score',
|
106 |
+
'outlier_count': 0,
|
107 |
+
'outlier_percentage': 0,
|
108 |
+
'explanation': "MAD is zero - no outliers detected using this method"
|
109 |
+
}
|
110 |
+
|
111 |
+
modified_z_scores = 0.6745 * (series - median) / mad
|
112 |
+
|
113 |
+
outlier_mask = np.abs(modified_z_scores) > threshold
|
114 |
+
outlier_indices = series[outlier_mask].index.tolist()
|
115 |
+
outlier_values = series[outlier_mask].tolist()
|
116 |
+
outlier_scores = modified_z_scores[outlier_mask].tolist()
|
117 |
+
|
118 |
+
return {
|
119 |
+
'method': 'Modified Z-Score',
|
120 |
+
'threshold': threshold,
|
121 |
+
'median': median,
|
122 |
+
'mad': mad,
|
123 |
+
'outlier_indices': outlier_indices,
|
124 |
+
'outlier_values': outlier_values,
|
125 |
+
'outlier_scores': outlier_scores,
|
126 |
+
'outlier_count': len(outlier_indices),
|
127 |
+
'outlier_percentage': (len(outlier_indices) / len(series)) * 100,
|
128 |
+
'explanation': f"Values with |modified z-score| > {threshold} are considered outliers (robust to extreme values)"
|
129 |
+
}
|
130 |
+
|
131 |
+
def detect_isolation_forest_outliers(self, columns: List[str], contamination: float = 0.1) -> Dict[str, Any]:
|
132 |
+
"""Detect multivariate outliers using Isolation Forest"""
|
133 |
+
if not columns or len(columns) < 1:
|
134 |
+
return {}
|
135 |
+
|
136 |
+
# Filter to only numeric columns that exist
|
137 |
+
valid_columns = [col for col in columns if col in self.numeric_columns]
|
138 |
+
if not valid_columns:
|
139 |
+
return {}
|
140 |
+
|
141 |
+
# Prepare data
|
142 |
+
data = self.df[valid_columns].dropna()
|
143 |
+
if len(data) < 10: # Need minimum data points
|
144 |
+
return {}
|
145 |
+
|
146 |
+
# Standardize the data
|
147 |
+
scaler = StandardScaler()
|
148 |
+
scaled_data = scaler.fit_transform(data)
|
149 |
+
|
150 |
+
# Fit Isolation Forest
|
151 |
+
iso_forest = IsolationForest(contamination=contamination, random_state=42)
|
152 |
+
outlier_labels = iso_forest.fit_predict(scaled_data)
|
153 |
+
|
154 |
+
# Get outlier indices and scores
|
155 |
+
outlier_mask = outlier_labels == -1
|
156 |
+
outlier_indices = data[outlier_mask].index.tolist()
|
157 |
+
outlier_scores = iso_forest.score_samples(scaled_data)
|
158 |
+
outlier_score_values = outlier_scores[outlier_mask].tolist()
|
159 |
+
|
160 |
+
return {
|
161 |
+
'method': 'Isolation Forest',
|
162 |
+
'contamination': contamination,
|
163 |
+
'columns_used': valid_columns,
|
164 |
+
'outlier_indices': outlier_indices,
|
165 |
+
'outlier_scores': outlier_score_values,
|
166 |
+
'outlier_count': len(outlier_indices),
|
167 |
+
'outlier_percentage': (len(outlier_indices) / len(data)) * 100,
|
168 |
+
'explanation': f"Multivariate outlier detection using {len(valid_columns)} features with {contamination*100}% expected contamination"
|
169 |
+
}
|
170 |
+
|
171 |
+
def detect_dbscan_outliers(self, columns: List[str], eps: float = 0.5, min_samples: int = 5) -> Dict[str, Any]:
|
172 |
+
"""Detect outliers using DBSCAN clustering"""
|
173 |
+
if not columns or len(columns) < 1:
|
174 |
+
return {}
|
175 |
+
|
176 |
+
# Filter to only numeric columns that exist
|
177 |
+
valid_columns = [col for col in columns if col in self.numeric_columns]
|
178 |
+
if not valid_columns:
|
179 |
+
return {}
|
180 |
+
|
181 |
+
# Prepare data
|
182 |
+
data = self.df[valid_columns].dropna()
|
183 |
+
if len(data) < min_samples * 2: # Need minimum data points
|
184 |
+
return {}
|
185 |
+
|
186 |
+
# Standardize the data
|
187 |
+
scaler = StandardScaler()
|
188 |
+
scaled_data = scaler.fit_transform(data)
|
189 |
+
|
190 |
+
# Apply DBSCAN
|
191 |
+
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
192 |
+
cluster_labels = dbscan.fit_predict(scaled_data)
|
193 |
+
|
194 |
+
# Points labeled as -1 are outliers
|
195 |
+
outlier_mask = cluster_labels == -1
|
196 |
+
outlier_indices = data[outlier_mask].index.tolist()
|
197 |
+
|
198 |
+
# Count clusters
|
199 |
+
n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
|
200 |
+
|
201 |
+
return {
|
202 |
+
'method': 'DBSCAN',
|
203 |
+
'eps': eps,
|
204 |
+
'min_samples': min_samples,
|
205 |
+
'columns_used': valid_columns,
|
206 |
+
'n_clusters': n_clusters,
|
207 |
+
'outlier_indices': outlier_indices,
|
208 |
+
'outlier_count': len(outlier_indices),
|
209 |
+
'outlier_percentage': (len(outlier_indices) / len(data)) * 100,
|
210 |
+
'explanation': f"Density-based outlier detection found {n_clusters} clusters using {len(valid_columns)} features"
|
211 |
+
}
|
212 |
+
|
213 |
+
def analyze_outliers(self, selected_columns: List[str] = None, methods: List[str] = None) -> Dict[str, Any]:
|
214 |
+
"""Comprehensive outlier analysis"""
|
215 |
+
if self.df is None:
|
216 |
+
return {}
|
217 |
+
|
218 |
+
if selected_columns is None:
|
219 |
+
selected_columns = self.numeric_columns
|
220 |
+
else:
|
221 |
+
# Filter to only numeric columns
|
222 |
+
selected_columns = [col for col in selected_columns if col in self.numeric_columns]
|
223 |
+
|
224 |
+
if not selected_columns:
|
225 |
+
return {}
|
226 |
+
|
227 |
+
if methods is None:
|
228 |
+
methods = ['IQR', 'Z-Score', 'Modified Z-Score', 'Isolation Forest']
|
229 |
+
|
230 |
+
results = {}
|
231 |
+
|
232 |
+
# Single-column methods
|
233 |
+
for column in selected_columns:
|
234 |
+
results[column] = {}
|
235 |
+
|
236 |
+
if 'IQR' in methods:
|
237 |
+
results[column]['IQR'] = self.detect_iqr_outliers(column)
|
238 |
+
|
239 |
+
if 'Z-Score' in methods:
|
240 |
+
results[column]['Z-Score'] = self.detect_zscore_outliers(column)
|
241 |
+
|
242 |
+
if 'Modified Z-Score' in methods:
|
243 |
+
results[column]['Modified Z-Score'] = self.detect_modified_zscore_outliers(column)
|
244 |
+
|
245 |
+
# Multi-column methods
|
246 |
+
if len(selected_columns) > 1:
|
247 |
+
if 'Isolation Forest' in methods:
|
248 |
+
results['Multivariate'] = {}
|
249 |
+
results['Multivariate']['Isolation Forest'] = self.detect_isolation_forest_outliers(selected_columns)
|
250 |
+
|
251 |
+
if 'DBSCAN' in methods:
|
252 |
+
if 'Multivariate' not in results:
|
253 |
+
results['Multivariate'] = {}
|
254 |
+
results['Multivariate']['DBSCAN'] = self.detect_dbscan_outliers(selected_columns)
|
255 |
+
|
256 |
+
self.outlier_results = results
|
257 |
+
return results
|
258 |
+
|
259 |
+
def generate_outlier_report(self) -> str:
|
260 |
+
"""Generate comprehensive outlier analysis report"""
|
261 |
+
if not self.outlier_results:
|
262 |
+
return "No outlier analysis results available. Please run the analysis first."
|
263 |
+
|
264 |
+
report = "#Outlier Detection Report\n\n"
|
265 |
+
|
266 |
+
# Summary statistics
|
267 |
+
total_outliers_by_method = {}
|
268 |
+
all_outlier_indices = set()
|
269 |
+
|
270 |
+
for column, methods in self.outlier_results.items():
|
271 |
+
if column == 'Multivariate':
|
272 |
+
continue
|
273 |
+
|
274 |
+
for method, result in methods.items():
|
275 |
+
if isinstance(result, dict) and 'outlier_count' in result:
|
276 |
+
if method not in total_outliers_by_method:
|
277 |
+
total_outliers_by_method[method] = 0
|
278 |
+
total_outliers_by_method[method] += result['outlier_count']
|
279 |
+
|
280 |
+
if 'outlier_indices' in result:
|
281 |
+
all_outlier_indices.update(result['outlier_indices'])
|
282 |
+
|
283 |
+
# Add multivariate results
|
284 |
+
if 'Multivariate' in self.outlier_results:
|
285 |
+
for method, result in self.outlier_results['Multivariate'].items():
|
286 |
+
if isinstance(result, dict) and 'outlier_count' in result:
|
287 |
+
total_outliers_by_method[method] = result['outlier_count']
|
288 |
+
if 'outlier_indices' in result:
|
289 |
+
all_outlier_indices.update(result['outlier_indices'])
|
290 |
+
|
291 |
+
report += "## Summary\n"
|
292 |
+
report += f"- **Total rows analyzed:** {len(self.df):,}\n"
|
293 |
+
report += f"- **Unique outlier rows found:** {len(all_outlier_indices)}\n"
|
294 |
+
report += f"- **Percentage of outlier rows:** {(len(all_outlier_indices)/len(self.df)*100):.2f}%\n\n"
|
295 |
+
|
296 |
+
report += "### Outliers by Method:\n"
|
297 |
+
for method, count in total_outliers_by_method.items():
|
298 |
+
report += f"- **{method}:** {count} outliers\n"
|
299 |
+
|
300 |
+
report += "\n"
|
301 |
+
|
302 |
+
# Detailed results by column
|
303 |
+
report += "## Detailed Results\n\n"
|
304 |
+
|
305 |
+
for column, methods in self.outlier_results.items():
|
306 |
+
if column == 'Multivariate':
|
307 |
+
continue
|
308 |
+
|
309 |
+
report += f"### Column: `{column}`\n\n"
|
310 |
+
|
311 |
+
for method, result in methods.items():
|
312 |
+
if not isinstance(result, dict) or 'outlier_count' in result and result['outlier_count'] == 0:
|
313 |
+
report += f"**{method}:** No outliers detected\n"
|
314 |
+
continue
|
315 |
+
|
316 |
+
report += f"**{method}:**\n"
|
317 |
+
report += f"- Outliers found: {result['outlier_count']} ({result['outlier_percentage']:.2f}%)\n"
|
318 |
+
report += f"- Explanation: {result['explanation']}\n"
|
319 |
+
|
320 |
+
# Show some example outlier values
|
321 |
+
if 'outlier_values' in result and result['outlier_values']:
|
322 |
+
sample_values = result['outlier_values'][:5] # Show first 5
|
323 |
+
report += f"- Example outliers: {', '.join([f'{v:.3f}' if isinstance(v, (int, float)) else str(v) for v in sample_values])}"
|
324 |
+
if len(result['outlier_values']) > 5:
|
325 |
+
report += f" (and {len(result['outlier_values']) - 5} more)"
|
326 |
+
report += "\n"
|
327 |
+
|
328 |
+
report += "\n"
|
329 |
+
|
330 |
+
# Multivariate results
|
331 |
+
if 'Multivariate' in self.outlier_results:
|
332 |
+
report += "### Multivariate Analysis\n\n"
|
333 |
+
|
334 |
+
for method, result in self.outlier_results['Multivariate'].items():
|
335 |
+
if not isinstance(result, dict):
|
336 |
+
continue
|
337 |
+
|
338 |
+
report += f"**{method}:**\n"
|
339 |
+
report += f"- Outliers found: {result['outli
|