Spaces:
Running
Running
File size: 7,916 Bytes
40a48fb ad9f8c5 54e930d ad9f8c5 54e930d 4018845 40a48fb 54e930d e314039 a6edca8 5280395 273cacd 5280395 e314039 5280395 e314039 fcc1ce5 a6edca8 40a48fb 54e930d f8f52b4 92aeff5 ad9f8c5 9e02f8a 40a48fb d780f21 ad9f8c5 54e930d 40a48fb 9e02f8a 40a48fb ad9f8c5 54e930d 40a48fb 54e930d 4333cf4 54e930d 9e02f8a 54e930d 40a48fb 9e02f8a 40a48fb 9e02f8a 54e930d 40a48fb 9e02f8a 40a48fb d780f21 54e930d 40a48fb 9e02f8a 54e930d 9e02f8a 54e930d ad9f8c5 40a48fb f8f52b4 40a48fb f8f52b4 c7fe441 f8f52b4 c7fe441 f8f52b4 c7fe441 52c8526 c7fe441 52c8526 c7fe441 b7d96b6 40a48fb fcc1ce5 40a48fb b7d96b6 91d4d53 40a48fb b7d96b6 40a48fb b7d96b6 40a48fb b7d96b6 40a48fb b7d96b6 40a48fb b7d96b6 ad9f8c5 40a48fb b7d96b6 f8f52b4 b7d96b6 5280395 e314039 b7d96b6 f8f52b4 b7d96b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import requests
import os
import datetime
import tempfile
from transformers import pipeline
# Load Two Models
light_chat_model = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.2",
revision="refs/pr/23", # Use latest stable revision if needed
use_auth_token="HUGGINGFACE_TOKEN",
max_length=256
)
advanced_summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
def answer_investing_question(question):
response = light_chat_model(question)[0]['generated_text']
return response.strip()
# API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Safe Request Function
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except:
return None
# Fetch Functions
def get_company_info(symbol):
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
data = response.json().get('results', {})
sector = data.get('market', 'Technology')
if sector.lower() == 'stocks':
sector = 'Technology'
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': sector,
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0]['c']
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0].get('cash_amount', 0)
return 0
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
return [], []
# Financial Calculations
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield
}
def compare_to_sector(sector, ratios):
if sector.lower() == 'stocks':
sector = 'Technology'
averages = sector_averages.get(sector, {})
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
data = {
"Ratio": [],
"Stock Value": [],
"Sector Average": [],
"Difference": []
}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages.get(key, 0)
diff = stock_value - sector_value
# Add emoji based on difference
if diff < 0:
diff_display = f"{diff:.2f} 🟢"
elif diff > 0:
diff_display = f"{diff:.2f} 🔴"
else:
diff_display = f"{diff:.2f} ⚪"
data["Ratio"].append(key)
data["Stock Value"].append(round(stock_value, 2))
data["Sector Average"].append(round(sector_value, 2))
data["Difference"].append(diff_display)
return pd.DataFrame(data)
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n"
)
return summarizer(report, max_length=250, min_length=100, do_sample=False)[0]['summary_text']
def stock_research(symbol, eps=5.0, growth=0.1, book=500000000):
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "⚠️ Error fetching stock info", None, None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends, eps, growth, book)
summary = generate_summary(info, ratios)
sector_comp = compare_to_sector(info['Sector'], ratios)
fig, ax = plt.subplots()
ax.plot(dates, prices)
ax.set_title(f"{symbol} Historical Price (1Y)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.grid(True)
info_table = pd.DataFrame(info.items(), columns=["Metric", "Value"])
ratios_table = pd.DataFrame(ratios.items(), columns=["Ratio", "Value"])
return summary, info_table, ratios_table, sector_comp, fig
# Gradio UI
with gr.Blocks(theme="soft") as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs():
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
with gr.Blocks(theme="soft") as iface:
with gr.Tab("Ask About Investing"):
user_question = gr.Textbox(label="Ask about investing...")
answer_box = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
ask_button.click(fn=answer_investing_question, inputs=[user_question], outputs=[answer_box])
submit_btn = gr.Button("Run Analysis")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart])
if __name__ == "__main__":
iface.launch()
|