Spaces:
Running
Running
File size: 7,964 Bytes
54e930d 4018845 54e930d 92aeff5 54e930d a80abfa 54e930d 92aeff5 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d a80abfa 54e930d a80abfa 54e930d a80abfa 54e930d 92aeff5 54e930d a80abfa 54e930d dcb6654 54e930d 92aeff5 54e930d a80abfa 54e930d 92aeff5 54e930d 92aeff5 4018845 54e930d a80abfa 92aeff5 a80abfa 92aeff5 a80abfa 92aeff5 a80abfa 92aeff5 a80abfa 54e930d 4018845 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
import tempfile
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages (Hardcoded for now)
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Helper Functions
def get_company_info(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={api_key}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results']
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': data.get('market', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
except Exception as e:
print(f"DEBUG: Error fetching company info: {e}")
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results'][0]
return float(data['c'])
except Exception as e:
print(f"DEBUG: Error fetching current price: {e}")
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
except Exception as e:
print(f"DEBUG: Error fetching dividends: {e}")
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
except Exception as e:
print(f"DEBUG: Error fetching historical prices: {e}")
return [], []
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
dividend_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio,
'Dividend Yield (%)': dividend_yield
}
def compare_to_sector(sector, ratios):
averages = sector_averages.get(sector, None)
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
comparison = {}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages[key]
comparison[key] = f"{stock_value:.2f} vs Sector Avg {sector_value:.2f}"
return pd.DataFrame({"Ratio": list(comparison.keys()), "Comparison": list(comparison.values())})
def generate_summary(info, ratios):
text = (f"{info['Name']} operates in the {info['Industry']} sector. It has a market capitalization of "
f"${info['Market Cap']:,.2f}. The company exhibits a P/E ratio of {ratios['P/E Ratio']:.2f}, "
f"P/S ratio of {ratios['P/S Ratio']:.2f}, and P/B ratio of {ratios['P/B Ratio']:.2f}. "
f"Its dividend yield is {ratios['Dividend Yield (%)']:.2f}%. "
f"This suggests a {'potential undervaluation' if ratios['P/E Ratio'] < 20 else 'higher valuation'} relative to the market.")
summary = summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text']
return summary
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
if assumed_eps is None:
assumed_eps = 5.0
if growth_rate is None:
growth_rate = 0.1
if book_value is None:
book_value = 500000000
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "Error fetching stock information.", None, None, None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends['Dividend Amount'], assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
sector_comp = compare_to_sector(info['Sector'], ratios)
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())})
ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())})
return summary, info_table, ratios_table, sector_comp, fig
def download_report(info_table, ratios_table, sector_comp, summary):
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w') as f:
info_table.to_csv(f, index=False)
f.write("\n")
ratios_table.to_csv(f, index=False)
f.write("\n")
sector_comp.to_csv(f, index=False)
f.write("\nSummary\n")
f.write(summary)
file_path = f.name
return file_path
with gr.Blocks() as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", info="Ticker symbol of the company to analyze.")
eps = gr.Number(label="Assumed EPS", value=5.0, info="Earnings Per Share (EPS) for P/E calculation.")
growth = gr.Number(label="Assumed Growth Rate", value=0.1, info="Expected annual growth rate for PEG.")
book = gr.Number(label="Assumed Book Value", value=500000000, info="Total net assets for P/B calculation.")
with gr.Tabs():
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
submit_btn = gr.Button("Run Analysis")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(
fn=stock_research,
inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart]
)
download_btn.click(
fn=download_report,
inputs=[output_info, output_ratios, output_sector, output_summary],
outputs=file_output
)
if __name__ == "__main__":
iface.launch()
|