File size: 7,964 Bytes
54e930d
 
 
 
 
 
 
 
4018845
54e930d
 
 
 
 
 
 
92aeff5
 
 
 
 
 
 
 
54e930d
 
a80abfa
 
54e930d
 
 
 
 
 
 
92aeff5
54e930d
4333cf4
54e930d
 
4333cf4
54e930d
 
 
 
 
 
 
 
 
 
4333cf4
54e930d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a80abfa
54e930d
 
 
 
a80abfa
54e930d
 
 
 
a80abfa
 
54e930d
 
92aeff5
 
 
 
 
 
 
 
 
 
 
 
54e930d
 
 
 
a80abfa
54e930d
 
 
 
 
dcb6654
 
 
 
 
 
 
54e930d
 
 
 
 
 
92aeff5
54e930d
a80abfa
54e930d
92aeff5
54e930d
 
 
 
 
 
 
 
 
 
 
 
92aeff5
 
 
4018845
 
 
 
 
 
 
 
 
 
54e930d
a80abfa
 
92aeff5
 
 
 
a80abfa
 
 
 
 
 
 
 
92aeff5
 
a80abfa
 
 
 
92aeff5
 
a80abfa
 
 
 
92aeff5
 
 
 
 
 
 
a80abfa
54e930d
 
4018845
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
import tempfile

# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")

# Sector Averages (Hardcoded for now)
sector_averages = {
    "Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
    "Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
    "Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
    "Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}

# Helper Functions
def get_company_info(symbol):
    api_key = os.getenv("POLYGON_API_KEY")
    url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={api_key}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()['results']
        return {
            'Name': data.get('name', 'N/A'),
            'Industry': data.get('sic_description', 'N/A'),
            'Sector': data.get('market', 'N/A'),
            'Market Cap': data.get('market_cap', 0),
            'Total Revenue': data.get('total_employees', 0) * 100000
        }
    except Exception as e:
        print(f"DEBUG: Error fetching company info: {e}")
        return None

def get_current_price(symbol):
    url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()['results'][0]
        return float(data['c'])
    except Exception as e:
        print(f"DEBUG: Error fetching current price: {e}")
        return None

def get_dividends(symbol):
    url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()['results'][0]
        return {
            'Dividend Amount': data.get('cash_amount', 0),
            'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
        }
    except Exception as e:
        print(f"DEBUG: Error fetching dividends: {e}")
        return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}

def get_historical_prices(symbol):
    end = datetime.date.today()
    start = end - datetime.timedelta(days=365)
    url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        results = response.json()['results']
        dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
        prices = [r['c'] for r in results]
        return dates, prices
    except Exception as e:
        print(f"DEBUG: Error fetching historical prices: {e}")
        return [], []

def calculate_ratios(market_cap, total_revenue, price, dividend_amount, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
    pe_ratio = price / assumed_eps if assumed_eps else 0
    ps_ratio = market_cap / total_revenue if total_revenue else 0
    pb_ratio = market_cap / book_value if book_value else 0
    peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
    dividend_yield = (dividend_amount / price) * 100 if price else 0
    return {
        'P/E Ratio': pe_ratio,
        'P/S Ratio': ps_ratio,
        'P/B Ratio': pb_ratio,
        'PEG Ratio': peg_ratio,
        'Dividend Yield (%)': dividend_yield
    }

def compare_to_sector(sector, ratios):
    averages = sector_averages.get(sector, None)
    if not averages:
        return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})

    comparison = {}
    for key in averages:
        stock_value = ratios.get(key, 0)
        sector_value = averages[key]
        comparison[key] = f"{stock_value:.2f} vs Sector Avg {sector_value:.2f}"
    return pd.DataFrame({"Ratio": list(comparison.keys()), "Comparison": list(comparison.values())})

def generate_summary(info, ratios):
    text = (f"{info['Name']} operates in the {info['Industry']} sector. It has a market capitalization of "
            f"${info['Market Cap']:,.2f}. The company exhibits a P/E ratio of {ratios['P/E Ratio']:.2f}, "
            f"P/S ratio of {ratios['P/S Ratio']:.2f}, and P/B ratio of {ratios['P/B Ratio']:.2f}. "
            f"Its dividend yield is {ratios['Dividend Yield (%)']:.2f}%. "
            f"This suggests a {'potential undervaluation' if ratios['P/E Ratio'] < 20 else 'higher valuation'} relative to the market.")
    summary = summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text']
    return summary

def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
    if assumed_eps is None:
        assumed_eps = 5.0
    if growth_rate is None:
        growth_rate = 0.1
    if book_value is None:
        book_value = 500000000

    info = get_company_info(symbol)
    price = get_current_price(symbol)
    dividends = get_dividends(symbol)
    dates, prices = get_historical_prices(symbol)

    if not info or not price:
        return "Error fetching stock information.", None, None, None, None, None

    ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends['Dividend Amount'], assumed_eps, growth_rate, book_value)
    summary = generate_summary(info, ratios)
    sector_comp = compare_to_sector(info['Sector'], ratios)

    fig, ax = plt.subplots()
    ax.plot(dates, prices, label=f"{symbol} Price")
    ax.set_title(f"{symbol} Historical Price (1 Year)")
    ax.set_xlabel("Date")
    ax.set_ylabel("Price ($)")
    ax.legend()
    ax.grid(True)

    info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())})
    ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())})

    return summary, info_table, ratios_table, sector_comp, fig

def download_report(info_table, ratios_table, sector_comp, summary):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w') as f:
        info_table.to_csv(f, index=False)
        f.write("\n")
        ratios_table.to_csv(f, index=False)
        f.write("\n")
        sector_comp.to_csv(f, index=False)
        f.write("\nSummary\n")
        f.write(summary)
        file_path = f.name
    return file_path

with gr.Blocks() as iface:
    with gr.Row():
        symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", info="Ticker symbol of the company to analyze.")
        eps = gr.Number(label="Assumed EPS", value=5.0, info="Earnings Per Share (EPS) for P/E calculation.")
        growth = gr.Number(label="Assumed Growth Rate", value=0.1, info="Expected annual growth rate for PEG.")
        book = gr.Number(label="Assumed Book Value", value=500000000, info="Total net assets for P/B calculation.")

    with gr.Tabs():
        with gr.Tab("AI Research Summary"):
            output_summary = gr.Textbox()
        with gr.Tab("Company Snapshot"):
            output_info = gr.Dataframe()
        with gr.Tab("Valuation Ratios"):
            output_ratios = gr.Dataframe()
        with gr.Tab("Sector Comparison"):
            output_sector = gr.Dataframe()
        with gr.Tab("Historical Price Chart"):
            output_chart = gr.Plot()

    submit_btn = gr.Button("Run Analysis")
    download_btn = gr.Button("Download Report")
    file_output = gr.File()

    submit_btn.click(
        fn=stock_research,
        inputs=[symbol, eps, growth, book],
        outputs=[output_summary, output_info, output_ratios, output_sector, output_chart]
    )

    download_btn.click(
        fn=download_report,
        inputs=[output_info, output_ratios, output_sector, output_summary],
        outputs=file_output
    )

if __name__ == "__main__":
    iface.launch()