Spaces:
Running
Running
File size: 9,359 Bytes
54e930d 4018845 54e930d f8f52b4 92aeff5 d780f21 f8f52b4 9e02f8a d780f21 54e930d a80abfa 9e02f8a a80abfa 9e02f8a 54e930d 92aeff5 54e930d 4333cf4 54e930d 9e02f8a 54e930d d780f21 54e930d 9e02f8a 54e930d 9e02f8a 54e930d d780f21 54e930d 9e02f8a 54e930d 9e02f8a 54e930d d780f21 54e930d 9e02f8a 54e930d 9e02f8a 54e930d 9e02f8a 54e930d d780f21 54e930d dd6ec15 b7d96b6 dd6ec15 b7d96b6 dd6ec15 d8afebe b7d96b6 d8afebe b7d96b6 d8afebe 00c2ebd d8afebe 54e930d d780f21 67ed81c ac76927 d780f21 ac76927 67ed81c d780f21 f8f52b4 b7d96b6 91d4d53 b7d96b6 f8f52b4 b7d96b6 91d4d53 b7d96b6 f8f52b4 b7d96b6 f8f52b4 b7d96b6 f8f52b4 b7d96b6 f8f52b4 b7d96b6 f8f52b4 b7d96b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
import tempfile
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Helper Functions
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except requests.exceptions.HTTPError as http_err:
print(f"DEBUG: HTTP error occurred: {http_err}")
except Exception as err:
print(f"DEBUG: Other error occurred: {err}")
return None
def get_company_info(symbol):
api_key = os.getenv("POLYGON_API_KEY")
if not api_key:
print("DEBUG: API Key is missing!")
return None
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={api_key}"
response = safe_request(url)
if response:
data = response.json().get('results', {})
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': data.get('market', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
return None
def get_current_price(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={api_key}"
response = safe_request(url)
if response:
data = response.json()['results'][0]
return float(data['c'])
return None
def get_dividends(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={api_key}"
response = safe_request(url)
if response:
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
api_key = os.getenv("POLYGON_API_KEY")
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={api_key}"
response = safe_request(url)
if response:
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
return [], []
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield (%)'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield (%)']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n\n"
f"Please provide a detailed financial analysis based on the information above."
)
summary = summarizer(report, max_length=250, min_length=100, do_sample=False)[0]['summary_text']
return summary
def answer_investing_question(question):
prompt = (
f"Someone asked: '{question}'. "
f"Please answer clearly, simply, and in a conversational tone without restating the question. "
f"Keep the answer beginner-friendly and encouraging."
)
response = summarizer(prompt, max_length=200, min_length=60, do_sample=False)[0]['summary_text']
return response
# (Rest of the app continues with stock_research, download_report, and Gradio UI, including improved Valuation Ratios with sector ideal comparison and polished UI.)
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
dividend_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio,
'Dividend Yield (%)': dividend_yield
}
def compare_to_sector(sector, ratios):
if sector.lower() == 'stocks':
sector = 'Technology' # Fallback
averages = sector_averages.get(sector, None)
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
comparison = {}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages[key]
comparison[key] = f"{stock_value:.2f} vs Sector Avg {sector_value:.2f}"
return pd.DataFrame({"Ratio": list(comparison.keys()), "Comparison": list(comparison.values())})
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "⚠️ Error: Could not fetch stock information. Please check your API Key or ticker.", None, None, None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends['Dividend Amount'], assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
# Apply fallback for sector
sector = info.get('Sector', 'Technology')
sector_comp = compare_to_sector(sector, ratios)
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
info_table = pd.DataFrame({
"Metric": list(info.keys()),
"Value": [f"${v:,.0f}" if isinstance(v, (int, float)) and abs(v) > 1000 else v for v in info.values()]
})
ratios_table = pd.DataFrame({
"Ratio": list(ratios.keys()),
"Value": [f"{v:.3f}" if isinstance(v, float) else v for v in ratios.values()]
})
return summary, info_table, ratios_table, sector_comp, fig
def download_report(info_table, ratios_table, sector_comp, summary):
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w') as f:
info_table.to_csv(f, index=False)
f.write("\n")
ratios_table.to_csv(f, index=False)
f.write("\n")
sector_comp.to_csv(f, index=False)
f.write("\nSummary\n")
f.write(summary)
file_path = f.name
return file_path
# --- Gradio UI ---
with gr.Blocks() as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs():
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
with gr.Tab("Ask About Investing"):
user_question = gr.Textbox(label="Ask a question about investing...")
answer_box = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
ask_button.click(fn=answer_investing_question, inputs=[user_question], outputs=[answer_box])
submit_btn = gr.Button("Run Analysis")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart])
download_btn.click(fn=download_report, inputs=[output_info, output_ratios, output_sector, output_summary],
outputs=file_output)
if __name__ == "__main__":
iface.launch()
|