Spaces:
Running
Running
File size: 6,413 Bytes
54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d 4333cf4 54e930d dcb6654 54e930d dcb6654 54e930d 4333cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Helper Functions
def get_company_info(symbol):
print(f"DEBUG: Using API Key: {POLYGON_API_KEY}")
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}"
print(f"DEBUG: Fetching company info URL: {url}")
try:
response = requests.get(url)
print(f"DEBUG: Response Status: {response.status_code}")
print(f"DEBUG: Response JSON: {response.json()}")
response.raise_for_status()
data = response.json()['results']
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
except Exception as e:
print(f"DEBUG: Error fetching company info: {e}")
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
print(f"DEBUG: Fetching current price URL: {url}")
try:
response = requests.get(url)
print(f"DEBUG: Response Status: {response.status_code}")
print(f"DEBUG: Response JSON: {response.json()}")
response.raise_for_status()
data = response.json()['results'][0]
return float(data['c'])
except Exception as e:
print(f"DEBUG: Error fetching current price: {e}")
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
print(f"DEBUG: Fetching dividends URL: {url}")
try:
response = requests.get(url)
print(f"DEBUG: Response Status: {response.status_code}")
print(f"DEBUG: Response JSON: {response.json()}")
response.raise_for_status()
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
except Exception as e:
print(f"DEBUG: Error fetching dividends: {e}")
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
print(f"DEBUG: Fetching historical prices URL: {url}")
try:
response = requests.get(url)
print(f"DEBUG: Response Status: {response.status_code}")
print(f"DEBUG: Response JSON: {response.json()}")
response.raise_for_status()
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
except Exception as e:
print(f"DEBUG: Error fetching historical prices: {e}")
return [], []
def calculate_ratios(market_cap, total_revenue, price, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio
}
def generate_summary(info, ratios):
text = (f"{info['Name']} operates in the {info['Industry']} sector. It has a market capitalization of "
f"${info['Market Cap']:,.2f}. The company exhibits a P/E ratio of {ratios['P/E Ratio']:.2f}, "
f"P/S ratio of {ratios['P/S Ratio']:.2f}, and P/B ratio of {ratios['P/B Ratio']:.2f}. "
f"This suggests a {'potential undervaluation' if ratios['P/E Ratio'] < 20 else 'higher valuation'} relative to the market.")
summary = summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text']
return summary
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
# Safeguard against None values
if assumed_eps is None:
assumed_eps = 5.0
if growth_rate is None:
growth_rate = 0.1
if book_value is None:
book_value = 500000000
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "Error fetching stock information.", None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
# Create historical price chart
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())})
ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())})
return summary, info_table, ratios_table, fig
iface = gr.Interface(
fn=stock_research,
inputs=[
gr.Textbox(label="Stock Symbol (e.g., AAPL)"),
gr.Number(label="Assumed EPS", value=5.0),
gr.Number(label="Assumed Growth Rate", value=0.1),
gr.Number(label="Assumed Book Value", value=500000000)
],
outputs=[
gr.Textbox(label="AI Research Summary"),
gr.Dataframe(label="Company Snapshot"),
gr.Dataframe(label="Valuation Ratios"),
gr.Plot(label="Historical Price Chart")
],
title="AI-Powered Stock Researcher",
description="Enter a stock symbol to get company info, valuation ratios, a 1-year price chart, and an AI-generated research summary based on live Polygon.io data."
)
if __name__ == "__main__":
iface.launch() |