File size: 5,471 Bytes
54e930d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime

# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")

# Helper Functions
def get_company_info(symbol):
    url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()['results']
        return {
            'Name': data.get('name', 'N/A'),
            'Industry': data.get('sic_description', 'N/A'),
            'Market Cap': data.get('market_cap', 0),
            'Total Revenue': data.get('total_employees', 0) * 100000  # Rough estimation
        }
    except Exception as e:
        print(f"DEBUG: Error fetching company info: {e}")
        return None

def get_current_price(symbol):
    url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()['results'][0]
        return float(data['c'])
    except Exception as e:
        print(f"DEBUG: Error fetching price: {e}")
        return None

def get_dividends(symbol):
    url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        data = response.json()['results'][0]
        return {
            'Dividend Amount': data.get('cash_amount', 0),
            'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
        }
    except Exception as e:
        print(f"DEBUG: Error fetching dividends: {e}")
        return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}

def get_historical_prices(symbol):
    end = datetime.date.today()
    start = end - datetime.timedelta(days=365)
    url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
    try:
        response = requests.get(url)
        response.raise_for_status()
        results = response.json()['results']
        dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
        prices = [r['c'] for r in results]
        return dates, prices
    except Exception as e:
        print(f"DEBUG: Error fetching historical prices: {e}")
        return [], []

def calculate_ratios(market_cap, total_revenue, price, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
    pe_ratio = price / assumed_eps if assumed_eps else 0
    ps_ratio = market_cap / total_revenue if total_revenue else 0
    pb_ratio = market_cap / book_value if book_value else 0
    peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
    return {
        'P/E Ratio': pe_ratio,
        'P/S Ratio': ps_ratio,
        'P/B Ratio': pb_ratio,
        'PEG Ratio': peg_ratio
    }

def generate_summary(info, ratios):
    text = (f"{info['Name']} operates in the {info['Industry']} sector. It has a market capitalization of "
            f"${info['Market Cap']:,.2f}. The company exhibits a P/E ratio of {ratios['P/E Ratio']:.2f}, "
            f"P/S ratio of {ratios['P/S Ratio']:.2f}, and P/B ratio of {ratios['P/B Ratio']:.2f}. "
            f"This suggests a {'potential undervaluation' if ratios['P/E Ratio'] < 20 else 'higher valuation'} relative to the market.")
    summary = summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text']
    return summary

def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
    info = get_company_info(symbol)
    price = get_current_price(symbol)
    dividends = get_dividends(symbol)
    dates, prices = get_historical_prices(symbol)

    if not info or not price:
        return "Error fetching stock information.", None, None, None

    ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, assumed_eps, growth_rate, book_value)
    summary = generate_summary(info, ratios)

    # Create historical price chart
    fig, ax = plt.subplots()
    ax.plot(dates, prices, label=f"{symbol} Price")
    ax.set_title(f"{symbol} Historical Price (1 Year)")
    ax.set_xlabel("Date")
    ax.set_ylabel("Price ($)")
    ax.legend()
    ax.grid(True)

    info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())})
    ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())})

    return summary, info_table, ratios_table, fig

iface = gr.Interface(
    fn=stock_research,
    inputs=[
        gr.Textbox(label="Stock Symbol (e.g., AAPL)"),
        gr.Number(label="Assumed EPS (default 5.0)"),
        gr.Number(label="Assumed Growth Rate (e.g., 0.1 for 10%)"),
        gr.Number(label="Assumed Book Value ($, default 500M)")
    ],
    outputs=[
        gr.Textbox(label="AI Research Summary"),
        gr.Dataframe(label="Company Snapshot"),
        gr.Dataframe(label="Valuation Ratios"),
        gr.Plot(label="Historical Price Chart")
    ],
    title="AI-Powered Stock Researcher",
    description="Enter a stock symbol to get company info, valuation ratios, a 1-year price chart, and an AI-generated research summary based on live Polygon.io data."
)

if __name__ == "__main__":
    iface.launch()