Spaces:
Running
Running
File size: 12,997 Bytes
40a48fb ad9f8c5 54e930d ad9f8c5 54e930d 4018845 fad7d76 54e930d fad7d76 3205789 2544f4c e55abed 2544f4c fad7d76 2544f4c b95ba21 e314039 54e930d 92aeff5 8beaa28 40a48fb fad7d76 c018938 f8f52b4 40a48fb 67a8285 c018938 c7fe441 52c8526 1c25f78 c018938 1c25f78 0b0f812 c018938 0b0f812 fad7d76 e92a914 0b0f812 fad7d76 b6a4331 fad7d76 b6a4331 fad7d76 0b0f812 67a8285 b7d96b6 8817f6b ad9f8c5 d277616 b7d96b6 f8f52b4 b7d96b6 20d6bb4 b7d96b6 6041e23 1c25f78 b7d96b6 8eb4d8c 9a0bbc7 8beaa28 b7d96b6 20d6bb4 b7d96b6 f8f52b4 1c25f78 b7d96b6 20d6bb4 cf721c7 20d6bb4 67a8285 8817f6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import requests
import os
import datetime
import tempfile
import numpy as np
# Your Hugging Face API Token
HF_Token = os.getenv("HF_Token")
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
headers = {
"Authorization": f"Bearer {HF_Token}"
}
def query_mistral(question):
payload = {"inputs": question, "parameters": {"max_length": 256}}
response = requests.post(API_URL, headers=headers, json=payload)
try:
output = response.json()
# Check for standard output format
if isinstance(output, list) and "generated_text" in output[0]:
return output[0]["generated_text"]
else:
# Return error message or full object for debugging
return f"[Error from Mistral API]: {output}"
except Exception as e:
return f"[Exception in query_mistral]: {str(e)}"
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except:
return None
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
debt_equity = np.random.uniform(0.2, 2.0)
roe = np.random.uniform(5, 25)
free_cash_flow = np.random.uniform(50000000, 500000000)
beta = np.random.uniform(0.8, 1.5)
ev_ebitda = np.random.uniform(8, 20) # Placeholder random value
price_cash_flow = np.random.uniform(10, 25)
operating_margin = np.random.uniform(10, 30)
revenue_growth = np.random.uniform(5, 20)
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield,
'Debt/Equity Ratio': debt_equity,
'Return on Equity (%)': roe,
'Free Cash Flow ($)': free_cash_flow,
'Beta (Volatility)': beta,
'EV/EBITDA': ev_ebitda,
'Price/Cash Flow': price_cash_flow,
'Operating Margin (%)': operating_margin,
'Revenue Growth (%)': revenue_growth
}
def stock_research(symbol, eps=5.0, growth=0.1, book=500000000):
info = {"Name": symbol, "Industry": "Tech", "Sector": "Technology", "Market Cap": np.random.randint(1000000000, 3000000000)}
price = np.random.uniform(100, 300)
dividends = np.random.uniform(0, 5)
dates = pd.date_range(datetime.date.today() - datetime.timedelta(days=365), periods=365)
prices = np.random.uniform(100, 300, size=365)
ratios = calculate_ratios(info['Market Cap'], info['Market Cap']/5, price, dividends, eps, growth, book)
ratios = {k: round(v, 2) for k, v in ratios.items()}
sector_comp = pd.DataFrame({"Metric": ["Example"], "Value": [0]})
smooth_prices = np.convolve(prices, np.ones(5)/5, mode='valid')
fig, ax = plt.subplots()
ax.plot(dates[:len(smooth_prices)], smooth_prices)
ax.set_title(f"{symbol} Historical Price (Smoothed)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.grid(True)
info_table = pd.DataFrame(info.items(), columns=["Metric", "Value"])
ratios_table = pd.DataFrame(ratios.items(), columns=["Metric", "Value"])
financial_health_metrics = [
"Debt/Equity Ratio", "Return on Equity (%)", "Free Cash Flow ($)", "Beta (Volatility)"
]
financial_health = ratios_table[ratios_table["Metric"].isin(financial_health_metrics)]
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['Debt/Equity Ratio'] < 1.0 and ratios['Return on Equity (%)'] > 10 and ratios['Beta (Volatility)'] < 1.2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 or ratios['Debt/Equity Ratio'] > 2.0 or ratios['Return on Equity (%)'] < 5:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info.get('Name', 'N/A')}\n"
f"Industry: {info.get('Industry', 'N/A')}\n"
f"Sector: {info.get('Sector', 'N/A')}\n"
f"Market Cap: ${info.get('Market Cap', 0):,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios.get('P/E Ratio', 'N/A')}\n"
f"P/S Ratio: {ratios.get('P/S Ratio', 'N/A')}\n"
f"P/B Ratio: {ratios.get('P/B Ratio', 'N/A')}\n"
f"PEG Ratio: {ratios.get('PEG Ratio', 'N/A')}\n"
f"Dividend Yield: {ratios.get('Dividend Yield', 'N/A')}%\n"
f"Debt/Equity Ratio: {ratios.get('Debt/Equity Ratio', 'N/A')}\n"
f"Return on Equity: {ratios.get('Return on Equity (%)', 'N/A')}%\n"
f"Free Cash Flow: ${ratios.get('Free Cash Flow ($)', 0):,.2f}\n"
f"Beta (Volatility): {ratios.get('Beta (Volatility)', 'N/A')}\n"
f"EV/EBITDA: {ratios.get('EV/EBITDA', 'N/A')}\n"
f"Price/Cash Flow: {ratios.get('Price/Cash Flow', 'N/A')}\n"
f"Operating Margin: {ratios.get('Operating Margin (%)', 'N/A')}%\n"
f"Revenue Growth: {ratios.get('Revenue Growth (%)', 'N/A')}%\n"
)
summary_prompt = f"Summarize this financial report clearly and briefly:\n\n{report}"
ai_summary = query_mistral(summary_prompt)
financial_health = pd.concat([
financial_health,
pd.DataFrame([{"Metric": "Recommendation", "Value": recommendation}])
], ignore_index=True)
return ai_summary, info_table, ratios_table, financial_health, sector_comp, fig
# Theme Selection
selected_theme = os.getenv("APP_THEME", "light")
if selected_theme == "dark":
theme = gr.themes.Base()
else:
theme = gr.themes.Soft(primary_hue="blue")
# Fetch Functions
def get_company_info(symbol):
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
data = response.json().get('results', {})
sector = data.get('market', 'Technology')
if sector.lower() == 'stocks':
sector = 'Technology'
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': sector,
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0]['c']
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0].get('cash_amount', 0)
return 0
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
return [], []
# Financial Calculations
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield
}
def compare_to_sector(sector, ratios):
if sector.lower() == 'stocks':
sector = 'Technology'
averages = sector_averages.get(sector, {})
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
data = {
"Ratio": [],
"Stock Value": [],
"Sector Average": [],
"Difference": []
}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages.get(key, 0)
diff = stock_value - sector_value
# Add emoji based on difference
if diff < 0:
diff_display = f"{diff:.2f} 🟢"
elif diff > 0:
diff_display = f"{diff:.2f} 🔴"
else:
diff_display = f"{diff:.2f} ⚪"
data["Ratio"].append(key)
data["Stock Value"].append(round(stock_value, 2))
data["Sector Average"].append(round(sector_value, 2))
data["Difference"].append(diff_display)
return pd.DataFrame(data)
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n"
)
# Use Mistral to generate the summary
summary_prompt = f"Summarize the following financial report clearly and briefly:\n\n{report}"
return query_mistral(summary_prompt)
# Gradio UI
with gr.Blocks(theme=theme) as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs() as tabs:
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe(label="Valuation Ratios")
with gr.Tab("Financial Health"):
output_health = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
with gr.Tab("Ask About Investing"):
user_question = gr.Textbox(label="Ask about investing...")
answer_box = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
with gr.Row():
ask_button.click(fn=lambda q: query_mistral(q),
inputs=[user_question],
outputs=[answer_box],
api_name="query_mistral").then(
lambda: "",
inputs=[],
outputs=[user_question]
)
with gr.Row():
submit_btn = gr.Button("Run Analysis")
reset_btn = gr.Button("Reset All Fields")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_health, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", None
reset_btn.click(
fn=reset_fields,
inputs=[],
outputs=[
symbol, eps, growth, book,
output_summary, output_info,
output_ratios, output_sector, output_chart
]
)
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart])
if __name__ == "__main__":
iface.launch() |