Stock-Analyser / app.py
CCockrum's picture
Update app.py
0b0f812 verified
raw
history blame
12.5 kB
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import requests
import os
import datetime
import tempfile
import numpy as np # Added for smoothing historical prices
# Your Hugging Face API Token (set this safely)
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
# Mistral Inference API URL
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
# Headers for authentication
headers = {
"Authorization": f"Bearer {HF_TOKEN}"
}
# Function to query Mistral API
def query_mistral(question):
payload = {
"inputs": question,
"parameters": {"max_length": 256}
}
response = requests.post(API_URL, headers=headers, json=payload)
output = response.json()
return output[0]["generated_text"]
# API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Safe Request Function
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except:
return None
# Fetch Functions
# Financial Calculations
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
# New Financial Health Metrics
debt_equity = np.random.uniform(0.2, 2.0) # Placeholder: random for now
roe = np.random.uniform(5, 25) # Placeholder: random for now
free_cash_flow = np.random.uniform(50000000, 500000000) # Placeholder: random for now
beta = np.random.uniform(0.8, 1.5) # Placeholder: random for now
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield,
'Debt/Equity Ratio': debt_equity,
'Return on Equity (%)': roe,
'Free Cash Flow ($)': free_cash_flow,
'Beta (Volatility)': beta
}
def stock_research(symbol, eps=5.0, growth=0.1, book=500000000):
info = {"Name": symbol, "Industry": "Tech", "Sector": "Technology", "Market Cap": np.random.randint(1000000000, 3000000000)}
price = np.random.uniform(100, 300)
dividends = np.random.uniform(0, 5)
dates = pd.date_range(datetime.date.today() - datetime.timedelta(days=365), periods=365)
prices = np.random.uniform(100, 300, size=365)
ratios = calculate_ratios(info['Market Cap'], info['Market Cap']/5, price, dividends, eps, growth, book)
ratios = {k: round(v, 2) for k, v in ratios.items()}
sector_comp = pd.DataFrame({"Metric": ["Example"], "Value": [0]})
smooth_prices = np.convolve(prices, np.ones(5)/5, mode='valid')
fig, ax = plt.subplots()
ax.plot(dates[:len(smooth_prices)], smooth_prices)
ax.set_title(f"{symbol} Historical Price (Smoothed)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.grid(True)
info_table = pd.DataFrame(info.items(), columns=["Metric", "Value"])
ratios_table = pd.DataFrame(ratios.items(), columns=["Metric", "Value"])
financial_health = ratios_table[ratios_table["Metric"].isin(["Debt/Equity Ratio", "Return on Equity (%)", "Free Cash Flow ($)", "Beta (Volatility)"])]
# New Recommendation Section
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['Debt/Equity Ratio'] < 1.0 and ratios['Return on Equity (%)'] > 10 and ratios['Beta (Volatility)'] < 1.2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 or ratios['Debt/Equity Ratio'] > 2.0 or ratios['Return on Equity (%)'] < 5:
recommendation = "Sell"
# Detailed report for summarization
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']}\n"
f"P/S Ratio: {ratios['P/S Ratio']}\n"
f"P/B Ratio: {ratios['P/B Ratio']}\n"
f"PEG Ratio: {ratios['PEG Ratio']}\n"
f"Dividend Yield: {ratios['Dividend Yield']}%\n"
f"Debt/Equity Ratio: {ratios['Debt/Equity Ratio']}\n"
f"Return on Equity: {ratios['Return on Equity (%)']}%\n"
f"Free Cash Flow: ${ratios['Free Cash Flow ($)']:,.2f}\n"
f"Beta (Volatility): {ratios['Beta (Volatility)']}\n"
)
# Summarize via Mistral
summary_prompt = f\"Summarize this financial report clearly and briefly:\n\n{report}\"
ai_summary = query_mistral(summary_prompt)
# Add recommendation inside financial health
financial_health = financial_health.append({\"Metric\": \"Recommendation\", \"Value\": recommendation}, ignore_index=True)
return ai_summary, info_table, ratios_table, financial_health, sector_comp, fig
# Theme Selection
selected_theme = os.getenv("APP_THEME", "light")
if selected_theme == "dark":
theme = gr.themes.Base()
else:
theme = gr.themes.Soft(primary_hue="blue")
# Fetch Functions
def get_company_info(symbol):
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
data = response.json().get('results', {})
sector = data.get('market', 'Technology')
if sector.lower() == 'stocks':
sector = 'Technology'
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': sector,
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0]['c']
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0].get('cash_amount', 0)
return 0
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
return [], []
# Financial Calculations
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield
}
def compare_to_sector(sector, ratios):
if sector.lower() == 'stocks':
sector = 'Technology'
averages = sector_averages.get(sector, {})
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
data = {
"Ratio": [],
"Stock Value": [],
"Sector Average": [],
"Difference": []
}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages.get(key, 0)
diff = stock_value - sector_value
# Add emoji based on difference
if diff < 0:
diff_display = f"{diff:.2f} 🟢"
elif diff > 0:
diff_display = f"{diff:.2f} 🔴"
else:
diff_display = f"{diff:.2f} ⚪"
data["Ratio"].append(key)
data["Stock Value"].append(round(stock_value, 2))
data["Sector Average"].append(round(sector_value, 2))
data["Difference"].append(diff_display)
return pd.DataFrame(data)
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n"
)
# Use Mistral to generate the summary
summary_prompt = f"Summarize the following financial report clearly and briefly:\n\n{report}"
return query_mistral(summary_prompt)
# Gradio UI
with gr.Blocks(theme=theme) as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs() as tabs:
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Financial Health"):
output_health = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
with gr.Tab("Ask About Investing"):
user_question = gr.Textbox(label="Ask about investing...")
answer_box = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
with gr.Row():
ask_button.click(fn=lambda q: query_mistral(q),
inputs=[user_question],
outputs=[answer_box],
api_name="query_mistral").then(
lambda: "",
inputs=[],
outputs=[user_question]
)
with gr.Row():
submit_btn = gr.Button("Run Analysis")
reset_btn = gr.Button("Reset All Fields")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_health, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_health, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart])
if __name__ == "__main__":
iface.launch()