Stock-Analyser / app.py
CCockrum's picture
Update app.py
6041e23 verified
raw
history blame
12.8 kB
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import requests
import os
import datetime
import tempfile
import numpy as np
# Your Hugging Face API Token
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
headers = {
"Authorization": f"Bearer {HF_TOKEN}"
}
def query_mistral(question):
payload = {"inputs": question, "parameters": {"max_length": 256}}
response = requests.post(API_URL, headers=headers, json=payload)
output = response.json()
return output[0]["generated_text"]
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except:
return None
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
debt_equity = np.random.uniform(0.2, 2.0)
roe = np.random.uniform(5, 25)
free_cash_flow = np.random.uniform(50000000, 500000000)
beta = np.random.uniform(0.8, 1.5)
ev_ebitda = np.random.uniform(8, 20) # Placeholder random value
price_cash_flow = np.random.uniform(10, 25)
operating_margin = np.random.uniform(10, 30)
revenue_growth = np.random.uniform(5, 20)
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield,
'Debt/Equity Ratio': debt_equity,
'Return on Equity (%)': roe,
'Free Cash Flow ($)': free_cash_flow,
'Beta (Volatility)': beta,
'EV/EBITDA': ev_ebitda,
'Price/Cash Flow': price_cash_flow,
'Operating Margin (%)': operating_margin,
'Revenue Growth (%)': revenue_growth
}
def stock_research(symbol, eps=5.0, growth=0.1, book=500000000):
info = {"Name": symbol, "Industry": "Tech", "Sector": "Technology", "Market Cap": np.random.randint(1000000000, 3000000000)}
price = np.random.uniform(100, 300)
dividends = np.random.uniform(0, 5)
dates = pd.date_range(datetime.date.today() - datetime.timedelta(days=365), periods=365)
prices = np.random.uniform(100, 300, size=365)
ratios = calculate_ratios(info['Market Cap'], info['Market Cap']/5, price, dividends, eps, growth, book)
ratios = {k: round(v, 2) for k, v in ratios.items()}
sector_comp = pd.DataFrame({"Metric": ["Example"], "Value": [0]})
smooth_prices = np.convolve(prices, np.ones(5)/5, mode='valid')
fig, ax = plt.subplots()
ax.plot(dates[:len(smooth_prices)], smooth_prices)
ax.set_title(f"{symbol} Historical Price (Smoothed)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.grid(True)
info_table = pd.DataFrame(info.items(), columns=["Metric", "Value"])
ratios_table = pd.DataFrame(ratios.items(), columns=["Metric", "Value"])
financial_health_metrics = [
"Debt/Equity Ratio", "Return on Equity (%)", "Free Cash Flow ($)", "Beta (Volatility)"
]
financial_health = ratios_table[ratios_table["Metric"].isin(financial_health_metrics)]
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['Debt/Equity Ratio'] < 1.0 and ratios['Return on Equity (%)'] > 10 and ratios['Beta (Volatility)'] < 1.2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 or ratios['Debt/Equity Ratio'] > 2.0 or ratios['Return on Equity (%)'] < 5:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info.get('Name', 'N/A')}\n"
f"Industry: {info.get('Industry', 'N/A')}\n"
f"Sector: {info.get('Sector', 'N/A')}\n"
f"Market Cap: ${info.get('Market Cap', 0):,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios.get('P/E Ratio', 'N/A')}\n"
f"P/S Ratio: {ratios.get('P/S Ratio', 'N/A')}\n"
f"P/B Ratio: {ratios.get('P/B Ratio', 'N/A')}\n"
f"PEG Ratio: {ratios.get('PEG Ratio', 'N/A')}\n"
f"Dividend Yield: {ratios.get('Dividend Yield', 'N/A')}%\n"
f"Debt/Equity Ratio: {ratios.get('Debt/Equity Ratio', 'N/A')}\n"
f"Return on Equity: {ratios.get('Return on Equity (%)', 'N/A')}%\n"
f"Free Cash Flow: ${ratios.get('Free Cash Flow ($)', 0):,.2f}\n"
f"Beta (Volatility): {ratios.get('Beta (Volatility)', 'N/A')}\n"
f"EV/EBITDA: {ratios.get('EV/EBITDA', 'N/A')}\n"
f"Price/Cash Flow: {ratios.get('Price/Cash Flow', 'N/A')}\n"
f"Operating Margin: {ratios.get('Operating Margin (%)', 'N/A')}%\n"
f"Revenue Growth: {ratios.get('Revenue Growth (%)', 'N/A')}%\n"
)
summary_prompt = f"Summarize this financial report clearly and briefly:\n\n{report}"
ai_summary = query_mistral(summary_prompt)
financial_health = pd.concat([
financial_health,
pd.DataFrame([{"Metric": "Recommendation", "Value": recommendation}])
], ignore_index=True)
return ai_summary, info_table, ratios_table, financial_health, sector_comp, fig
# Theme Selection
selected_theme = os.getenv("APP_THEME", "light")
if selected_theme == "dark":
theme = gr.themes.Base()
else:
theme = gr.themes.Soft(primary_hue="blue")
# Fetch Functions
def get_company_info(symbol):
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
data = response.json().get('results', {})
sector = data.get('market', 'Technology')
if sector.lower() == 'stocks':
sector = 'Technology'
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': sector,
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0]['c']
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
return response.json()['results'][0].get('cash_amount', 0)
return 0
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
response = safe_request(url)
if response:
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
return [], []
# Financial Calculations
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield
}
def compare_to_sector(sector, ratios):
if sector.lower() == 'stocks':
sector = 'Technology'
averages = sector_averages.get(sector, {})
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
data = {
"Ratio": [],
"Stock Value": [],
"Sector Average": [],
"Difference": []
}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages.get(key, 0)
diff = stock_value - sector_value
# Add emoji based on difference
if diff < 0:
diff_display = f"{diff:.2f} 🟢"
elif diff > 0:
diff_display = f"{diff:.2f} 🔴"
else:
diff_display = f"{diff:.2f} ⚪"
data["Ratio"].append(key)
data["Stock Value"].append(round(stock_value, 2))
data["Sector Average"].append(round(sector_value, 2))
data["Difference"].append(diff_display)
return pd.DataFrame(data)
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n"
)
# Use Mistral to generate the summary
summary_prompt = f"Summarize the following financial report clearly and briefly:\n\n{report}"
return query_mistral(summary_prompt)
# Gradio UI
with gr.Blocks(theme=theme) as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs() as tabs:
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe(label="Valuation Ratios")
with gr.Tab("Financial Health"):
output_health = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
with gr.Tab("Ask About Investing"):
user_question = gr.Textbox(label="Ask about investing...")
answer_box = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
with gr.Row():
ask_button.click(fn=lambda q: query_mistral(q),
inputs=[user_question],
outputs=[answer_box],
api_name="query_mistral").then(
lambda: "",
inputs=[],
outputs=[user_question]
)
with gr.Row():
submit_btn = gr.Button("Run Analysis")
reset_btn = gr.Button("Reset All Fields")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_health, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_health, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart])
if __name__ == "__main__":
iface.launch()