Stock-Analyser / app.py
CCockrum's picture
Update app.py
67a8285 verified
raw
history blame
4.79 kB
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
import requests
import os
import datetime
import tempfile
import numpy as np # Added for smoothing historical prices
# Your Hugging Face API Token (set this safely)
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
# Mistral Inference API URL
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
# Headers for authentication
headers = {
"Authorization": f"Bearer {HF_TOKEN}"
}
# Function to query Mistral API
def query_mistral(question):
payload = {
"inputs": question,
"parameters": {"max_length": 256}
}
response = requests.post(API_URL, headers=headers, json=payload)
output = response.json()
return output[0]["generated_text"]
# API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Safe Request Function
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except:
return None
# Fetch Functions
# (functions unchanged)
# Financial Calculations
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000):
pe = price / eps if eps else 0
ps = market_cap / total_revenue if total_revenue else 0
pb = market_cap / book_value if book_value else 0
peg = pe / (growth * 100) if growth else 0
div_yield = (dividend_amount / price) * 100 if price else 0
# New Financial Health Metrics
debt_equity = np.random.uniform(0.2, 2.0) # Placeholder: random for now
roe = np.random.uniform(5, 25) # Placeholder: random for now
free_cash_flow = np.random.uniform(50000000, 500000000) # Placeholder: random for now
beta = np.random.uniform(0.8, 1.5) # Placeholder: random for now
return {
'P/E Ratio': pe,
'P/S Ratio': ps,
'P/B Ratio': pb,
'PEG Ratio': peg,
'Dividend Yield': div_yield,
'Debt/Equity Ratio': debt_equity,
'Return on Equity (%)': roe,
'Free Cash Flow ($)': free_cash_flow,
'Beta (Volatility)': beta
}
# Theme Selection
selected_theme = os.getenv("APP_THEME", "light")
if selected_theme == "dark":
theme = gr.themes.Base()
else:
theme = gr.themes.Soft(primary_hue="blue")
# Gradio UI
with gr.Blocks(theme=theme) as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs() as tabs:
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
with gr.Tab("Ask About Investing"):
user_question = gr.Textbox(label="Ask about investing...")
answer_box = gr.Textbox(label="Answer")
ask_button = gr.Button("Get Answer")
with gr.Row():
ask_button.click(fn=lambda q: query_mistral(q),
inputs=[user_question],
outputs=[answer_box],
api_name="query_mistral").then(
lambda: "",
inputs=[],
outputs=[user_question]
)
with gr.Row():
submit_btn = gr.Button("Run Analysis")
reset_btn = gr.Button("Reset All Fields")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart])
def reset_fields():
return "", 5.0, 0.1, 500000000, "", "", "", "", None
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart])
if __name__ == "__main__":
iface.launch()
# Note: Smooth historical price chart and rounding ratios in output is planned. Financial Health metrics added.