Spaces:
Running
Running
import pandas as pd | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import requests | |
import os | |
import datetime | |
import tempfile | |
import numpy as np # Added for smoothing historical prices | |
# Your Hugging Face API Token (set this safely) | |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
# Mistral Inference API URL | |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" | |
# Headers for authentication | |
headers = { | |
"Authorization": f"Bearer {HF_TOKEN}" | |
} | |
# Function to query Mistral API | |
def query_mistral(question): | |
payload = { | |
"inputs": question, | |
"parameters": {"max_length": 256} | |
} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
output = response.json() | |
return output[0]["generated_text"] | |
# API Key | |
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY") | |
# Sector Averages | |
sector_averages = { | |
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6}, | |
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3}, | |
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5}, | |
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3}, | |
} | |
# Safe Request Function | |
def safe_request(url): | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
return response | |
except: | |
return None | |
# Fetch Functions | |
# (functions unchanged) | |
# ... | |
# Financial Calculations | |
# Financial Calculations | |
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000): | |
pe = price / eps if eps else 0 | |
ps = market_cap / total_revenue if total_revenue else 0 | |
pb = market_cap / book_value if book_value else 0 | |
peg = pe / (growth * 100) if growth else 0 | |
div_yield = (dividend_amount / price) * 100 if price else 0 | |
# New Financial Health Metrics | |
debt_equity = np.random.uniform(0.2, 2.0) # Placeholder: random for now | |
roe = np.random.uniform(5, 25) # Placeholder: random for now | |
free_cash_flow = np.random.uniform(50000000, 500000000) # Placeholder: random for now | |
beta = np.random.uniform(0.8, 1.5) # Placeholder: random for now | |
return { | |
'P/E Ratio': pe, | |
'P/S Ratio': ps, | |
'P/B Ratio': pb, | |
'PEG Ratio': peg, | |
'Dividend Yield': div_yield, | |
'Debt/Equity Ratio': debt_equity, | |
'Return on Equity (%)': roe, | |
'Free Cash Flow ($)': free_cash_flow, | |
'Beta (Volatility)': beta | |
} | |
# Theme Selection | |
selected_theme = os.getenv("APP_THEME", "light") | |
if selected_theme == "dark": | |
theme = gr.themes.Base() | |
else: | |
theme = gr.themes.Soft(primary_hue="blue") | |
# Fetch Functions | |
def get_company_info(symbol): | |
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}" | |
response = safe_request(url) | |
if response: | |
data = response.json().get('results', {}) | |
sector = data.get('market', 'Technology') | |
if sector.lower() == 'stocks': | |
sector = 'Technology' | |
return { | |
'Name': data.get('name', 'N/A'), | |
'Industry': data.get('sic_description', 'N/A'), | |
'Sector': sector, | |
'Market Cap': data.get('market_cap', 0), | |
'Total Revenue': data.get('total_employees', 0) * 100000 | |
} | |
return None | |
def get_current_price(symbol): | |
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}" | |
response = safe_request(url) | |
if response: | |
return response.json()['results'][0]['c'] | |
return None | |
def get_dividends(symbol): | |
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}" | |
response = safe_request(url) | |
if response: | |
return response.json()['results'][0].get('cash_amount', 0) | |
return 0 | |
def get_historical_prices(symbol): | |
end = datetime.date.today() | |
start = end - datetime.timedelta(days=365) | |
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}" | |
response = safe_request(url) | |
if response: | |
results = response.json()['results'] | |
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results] | |
prices = [r['c'] for r in results] | |
return dates, prices | |
return [], [] | |
# Financial Calculations | |
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000): | |
pe = price / eps if eps else 0 | |
ps = market_cap / total_revenue if total_revenue else 0 | |
pb = market_cap / book_value if book_value else 0 | |
peg = pe / (growth * 100) if growth else 0 | |
div_yield = (dividend_amount / price) * 100 if price else 0 | |
return { | |
'P/E Ratio': pe, | |
'P/S Ratio': ps, | |
'P/B Ratio': pb, | |
'PEG Ratio': peg, | |
'Dividend Yield': div_yield | |
} | |
def compare_to_sector(sector, ratios): | |
if sector.lower() == 'stocks': | |
sector = 'Technology' | |
averages = sector_averages.get(sector, {}) | |
if not averages: | |
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]}) | |
data = { | |
"Ratio": [], | |
"Stock Value": [], | |
"Sector Average": [], | |
"Difference": [] | |
} | |
for key in averages: | |
stock_value = ratios.get(key, 0) | |
sector_value = averages.get(key, 0) | |
diff = stock_value - sector_value | |
# Add emoji based on difference | |
if diff < 0: | |
diff_display = f"{diff:.2f} 🟢" | |
elif diff > 0: | |
diff_display = f"{diff:.2f} 🔴" | |
else: | |
diff_display = f"{diff:.2f} ⚪" | |
data["Ratio"].append(key) | |
data["Stock Value"].append(round(stock_value, 2)) | |
data["Sector Average"].append(round(sector_value, 2)) | |
data["Difference"].append(diff_display) | |
return pd.DataFrame(data) | |
def generate_summary(info, ratios): | |
recommendation = "Hold" | |
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield'] > 2: | |
recommendation = "Buy" | |
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0: | |
recommendation = "Sell" | |
report = ( | |
f"Company Overview:\n" | |
f"Name: {info['Name']}\n" | |
f"Industry: {info['Industry']}\n" | |
f"Sector: {info['Sector']}\n" | |
f"Market Cap: ${info['Market Cap']:,.2f}\n\n" | |
f"Financial Metrics:\n" | |
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n" | |
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n" | |
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n" | |
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n" | |
f"Dividend Yield: {ratios['Dividend Yield']:.2f}%\n\n" | |
f"Recommended Investment Action: {recommendation}.\n" | |
) | |
# Use Mistral to generate the summary | |
summary_prompt = f"Summarize the following financial report clearly and briefly:\n\n{report}" | |
return query_mistral(summary_prompt) | |
def stock_research(symbol, eps=5.0, growth=0.1, book=500000000): | |
info = get_company_info(symbol) | |
price = get_current_price(symbol) | |
dividends = get_dividends(symbol) | |
dates, prices = get_historical_prices(symbol) | |
if not info or not price: | |
return "⚠️ Error fetching stock info", None, None, None, None | |
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends, eps, growth, book) | |
summary = generate_summary(info, ratios) | |
sector_comp = compare_to_sector(info['Sector'], ratios) | |
fig, ax = plt.subplots() | |
ax.plot(dates, prices) | |
ax.set_title(f"{symbol} Historical Price (1Y)") | |
ax.set_xlabel("Date") | |
ax.set_ylabel("Price ($)") | |
ax.grid(True) | |
info_table = pd.DataFrame(info.items(), columns=["Metric", "Value"]) | |
ratios_table = pd.DataFrame(ratios.items(), columns=["Ratio", "Value"]) | |
return summary, info_table, ratios_table, sector_comp, fig | |
# Gradio UI | |
with gr.Blocks(theme=theme) as iface: | |
with gr.Row(): | |
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)") | |
eps = gr.Number(label="Assumed EPS", value=5.0) | |
growth = gr.Number(label="Assumed Growth Rate", value=0.1) | |
book = gr.Number(label="Assumed Book Value", value=500000000) | |
with gr.Tabs() as tabs: | |
with gr.Tab("AI Research Summary"): | |
output_summary = gr.Textbox() | |
with gr.Tab("Company Snapshot"): | |
output_info = gr.Dataframe() | |
with gr.Tab("Valuation Ratios"): | |
output_ratios = gr.Dataframe() | |
with gr.Tab("Sector Comparison"): | |
output_sector = gr.Dataframe() | |
with gr.Tab("Historical Price Chart"): | |
output_chart = gr.Plot() | |
with gr.Tab("Ask About Investing"): | |
user_question = gr.Textbox(label="Ask about investing...") | |
answer_box = gr.Textbox(label="Answer") | |
ask_button = gr.Button("Get Answer") | |
with gr.Row(): | |
ask_button.click(fn=lambda q: query_mistral(q), | |
inputs=[user_question], | |
outputs=[answer_box], | |
api_name="query_mistral").then( | |
lambda: "", | |
inputs=[], | |
outputs=[user_question] | |
) | |
with gr.Row(): | |
submit_btn = gr.Button("Run Analysis") | |
reset_btn = gr.Button("Reset All Fields") | |
download_btn = gr.Button("Download Report") | |
file_output = gr.File() | |
submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book], | |
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart]) | |
def reset_fields(): | |
return "", 5.0, 0.1, 500000000, "", "", "", "", None | |
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart]) | |
def reset_fields(): | |
return "", 5.0, 0.1, 500000000, "", "", "", "", None | |
reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart]) | |
if __name__ == "__main__": | |
iface.launch() |