Stock-Analyser / app.py
CCockrum's picture
Update app.py
91d4d53 verified
raw
history blame
8.92 kB
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
import tempfile
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages (Hardcoded for now)
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Helper Functions
def safe_request(url):
try:
response = requests.get(url)
response.raise_for_status()
return response
except requests.exceptions.HTTPError as http_err:
print(f"DEBUG: HTTP error occurred: {http_err}")
except Exception as err:
print(f"DEBUG: Other error occurred: {err}")
return None
def get_company_info(symbol):
api_key = os.getenv("POLYGON_API_KEY")
if not api_key:
print("DEBUG: API Key is missing!")
return None
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={api_key}"
print(f"DEBUG: Fetching company info from URL: {url}")
response = safe_request(url)
if response:
data = response.json().get('results', {})
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': data.get('market', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
return None
def get_current_price(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={api_key}"
print(f"DEBUG: Fetching current price from URL: {url}")
response = safe_request(url)
if response:
data = response.json()['results'][0]
return float(data['c'])
return None
def get_dividends(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={api_key}"
response = safe_request(url)
if response:
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
api_key = os.getenv("POLYGON_API_KEY")
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={api_key}"
response = safe_request(url)
if response:
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
return [], []
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield (%)'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield (%)']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n\n"
f"Please provide a detailed financial analysis based on the information above."
)
summary = summarizer(report, max_length=250, min_length=100, do_sample=False)[0]['summary_text']
return summary
# (Rest of the code remains the same)
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
dividend_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio,
'Dividend Yield (%)': dividend_yield
}
def compare_to_sector(sector, ratios):
averages = sector_averages.get(sector, None)
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
comparison = {}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages[key]
comparison[key] = f"{stock_value:.2f} vs Sector Avg {sector_value:.2f}"
return pd.DataFrame({"Ratio": list(comparison.keys()), "Comparison": list(comparison.values())})
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
if assumed_eps is None:
assumed_eps = 5.0
if growth_rate is None:
growth_rate = 0.1
if book_value is None:
book_value = 500000000
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "⚠️ Error: Could not fetch stock information. Please check your API Key or ticker.", None, None, None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends['Dividend Amount'], assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
sector_comp = compare_to_sector(info['Sector'], ratios)
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
# ✅ Format info_table
info_table = pd.DataFrame({
"Metric": list(info.keys()),
"Value": [f"${v:,.0f}" if isinstance(v, (int, float)) and abs(v) > 1000 else v for v in info.values()]
})
# ✅ Format ratios_table
ratios_table = pd.DataFrame({
"Ratio": list(ratios.keys()),
"Value": [f"{v:.3f}" if isinstance(v, float) else v for v in ratios.values()]
})
return summary, info_table, ratios_table, sector_comp, fig
def download_report(info_table, ratios_table, sector_comp, summary):
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w') as f:
info_table.to_csv(f, index=False)
f.write("\n")
ratios_table.to_csv(f, index=False)
f.write("\n")
sector_comp.to_csv(f, index=False)
f.write("\nSummary\n")
f.write(summary)
file_path = f.name
return file_path
# Gradio UI
with gr.Blocks() as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", info="Ticker symbol of the company to analyze.")
eps = gr.Number(label="Assumed EPS", value=5.0, info="Earnings Per Share (EPS) for P/E calculation.")
growth = gr.Number(label="Assumed Growth Rate", value=0.1, info="Expected annual growth rate for PEG.")
book = gr.Number(label="Assumed Book Value", value=500000000, info="Total net assets for P/B calculation.")
with gr.Tabs():
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
submit_btn = gr.Button("Run Analysis")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(
fn=stock_research,
inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart]
)
download_btn.click(
fn=download_report,
inputs=[output_info, output_ratios, output_sector, output_summary],
outputs=file_output
)
if __name__ == "__main__":
iface.launch()