Stock-Analyser / app.py
CCockrum's picture
Update app.py
a80abfa verified
raw
history blame
6.37 kB
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Helper Functions
def get_company_info(symbol):
api_key = os.getenv("POLYGON_API_KEY")
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={api_key}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results']
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
except Exception as e:
print(f"DEBUG: Error fetching company info: {e}")
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results'][0]
return float(data['c'])
except Exception as e:
print(f"DEBUG: Error fetching current price: {e}")
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
except Exception as e:
print(f"DEBUG: Error fetching dividends: {e}")
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
except Exception as e:
print(f"DEBUG: Error fetching historical prices: {e}")
return [], []
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
dividend_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio,
'Dividend Yield (%)': dividend_yield
}
def generate_summary(info, ratios):
text = (f"{info['Name']} operates in the {info['Industry']} sector. It has a market capitalization of "
f"${info['Market Cap']:,.2f}. The company exhibits a P/E ratio of {ratios['P/E Ratio']:.2f}, "
f"P/S ratio of {ratios['P/S Ratio']:.2f}, and P/B ratio of {ratios['P/B Ratio']:.2f}. "
f"Its dividend yield is {ratios['Dividend Yield (%)']:.2f}%. "
f"This suggests a {'potential undervaluation' if ratios['P/E Ratio'] < 20 else 'higher valuation'} relative to the market.")
summary = summarizer(text, max_length=120, min_length=30, do_sample=False)[0]['summary_text']
return summary
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
if assumed_eps is None:
assumed_eps = 5.0
if growth_rate is None:
growth_rate = 0.1
if book_value is None:
book_value = 500000000
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "Error fetching stock information.", None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends['Dividend Amount'], assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())})
ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())})
return summary, info_table, ratios_table, fig
with gr.Blocks() as iface:
gr.Markdown("""
# 📚 Why These Inputs Matter:
- **Assumed EPS**: Needed to calculate the Price/Earnings (P/E) Ratio.
- **Assumed Growth Rate**: Needed to calculate the Price/Earnings/Growth (PEG) Ratio.
- **Assumed Book Value**: Needed to calculate the Price/Book (P/B) Ratio.
- **Dividend Info**: Automatically fetched.
""")
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)")
eps = gr.Number(label="Assumed EPS", value=5.0)
growth = gr.Number(label="Assumed Growth Rate", value=0.1)
book = gr.Number(label="Assumed Book Value", value=500000000)
with gr.Tabs():
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
submit_btn = gr.Button("Run Analysis")
submit_btn.click(
fn=stock_research,
inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_chart]
)
if __name__ == "__main__":
iface.launch()