Stock-Analyser / app.py
CCockrum's picture
Update app.py
d8afebe verified
raw
history blame
9.1 kB
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import requests
import os
from transformers import pipeline
import datetime
import tempfile
# Initialize Summarizer
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Polygon API Key
POLYGON_API_KEY = os.getenv("POLYGON_API_KEY")
# Sector Averages (Hardcoded for now)
sector_averages = {
"Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6},
"Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3},
"Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5},
"Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3},
}
# Helper Functions
def get_company_info(symbol):
api_key = os.getenv("POLYGON_API_KEY")
print(f"DEBUG: Using API Key: {api_key}")
url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={api_key}"
print(f"DEBUG: Fetching company info from URL: {url}")
try:
response = requests.get(url)
print(f"DEBUG: Company Info Status Code: {response.status_code}")
print(f"DEBUG: Company Info Response: {response.text}")
response.raise_for_status()
data = response.json()['results']
return {
'Name': data.get('name', 'N/A'),
'Industry': data.get('sic_description', 'N/A'),
'Sector': data.get('market', 'N/A'),
'Market Cap': data.get('market_cap', 0),
'Total Revenue': data.get('total_employees', 0) * 100000
}
except Exception as e:
print(f"DEBUG: Error fetching company info: {e}")
return None
def get_current_price(symbol):
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}"
print(f"DEBUG: Fetching current price from URL: {url}")
try:
response = requests.get(url)
print(f"DEBUG: Current Price Status Code: {response.status_code}")
print(f"DEBUG: Current Price Response: {response.text}")
response.raise_for_status()
data = response.json()['results'][0]
return float(data['c'])
except Exception as e:
print(f"DEBUG: Error fetching current price: {e}")
return None
def get_dividends(symbol):
url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
response.raise_for_status()
data = response.json()['results'][0]
return {
'Dividend Amount': data.get('cash_amount', 0),
'Ex-Dividend Date': data.get('ex_dividend_date', 'N/A')
}
except Exception as e:
print(f"DEBUG: Error fetching dividends: {e}")
return {'Dividend Amount': 0, 'Ex-Dividend Date': 'N/A'}
def get_historical_prices(symbol):
end = datetime.date.today()
start = end - datetime.timedelta(days=365)
url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}"
try:
response = requests.get(url)
print(f"DEBUG: Historical Prices Status Code: {response.status_code}")
print(f"DEBUG: Historical Prices Response: {response.text}")
response.raise_for_status()
results = response.json()['results']
dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results]
prices = [r['c'] for r in results]
return dates, prices
except Exception as e:
print(f"DEBUG: Error fetching historical prices: {e}")
return [], []
def generate_summary(info, ratios):
recommendation = "Hold"
if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield (%)'] > 2:
recommendation = "Buy"
elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0:
recommendation = "Sell"
# Much better structured prompt
report = (
f"Company Overview:\n"
f"Name: {info['Name']}\n"
f"Industry: {info['Industry']}\n"
f"Sector: {info['Sector']}\n"
f"Market Cap: ${info['Market Cap']:,.2f}\n\n"
f"Financial Metrics:\n"
f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n"
f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n"
f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n"
f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n"
f"Dividend Yield: {ratios['Dividend Yield (%)']:.2f}%\n\n"
f"Recommended Investment Action: {recommendation}.\n\n"
f"Please provide a detailed financial analysis based on the information above."
)
summary = summarizer(report, max_length=250, min_length=100, do_sample=False)[0]['summary_text']
return summary
# (Rest of the code remains the same)
def calculate_ratios(market_cap, total_revenue, price, dividend_amount, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
pe_ratio = price / assumed_eps if assumed_eps else 0
ps_ratio = market_cap / total_revenue if total_revenue else 0
pb_ratio = market_cap / book_value if book_value else 0
peg_ratio = pe_ratio / (growth_rate * 100) if growth_rate else 0
dividend_yield = (dividend_amount / price) * 100 if price else 0
return {
'P/E Ratio': pe_ratio,
'P/S Ratio': ps_ratio,
'P/B Ratio': pb_ratio,
'PEG Ratio': peg_ratio,
'Dividend Yield (%)': dividend_yield
}
def compare_to_sector(sector, ratios):
averages = sector_averages.get(sector, None)
if not averages:
return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]})
comparison = {}
for key in averages:
stock_value = ratios.get(key, 0)
sector_value = averages[key]
comparison[key] = f"{stock_value:.2f} vs Sector Avg {sector_value:.2f}"
return pd.DataFrame({"Ratio": list(comparison.keys()), "Comparison": list(comparison.values())})
def stock_research(symbol, assumed_eps=5.0, growth_rate=0.1, book_value=500000000):
if assumed_eps is None:
assumed_eps = 5.0
if growth_rate is None:
growth_rate = 0.1
if book_value is None:
book_value = 500000000
info = get_company_info(symbol)
price = get_current_price(symbol)
dividends = get_dividends(symbol)
dates, prices = get_historical_prices(symbol)
if not info or not price:
return "Error fetching stock information.", None, None, None, None, None
ratios = calculate_ratios(info['Market Cap'], info['Total Revenue'], price, dividends['Dividend Amount'], assumed_eps, growth_rate, book_value)
summary = generate_summary(info, ratios)
sector_comp = compare_to_sector(info['Sector'], ratios)
fig, ax = plt.subplots()
ax.plot(dates, prices, label=f"{symbol} Price")
ax.set_title(f"{symbol} Historical Price (1 Year)")
ax.set_xlabel("Date")
ax.set_ylabel("Price ($)")
ax.legend()
ax.grid(True)
info_table = pd.DataFrame({"Metric": list(info.keys()), "Value": list(info.values())})
ratios_table = pd.DataFrame({"Ratio": list(ratios.keys()), "Value": list(ratios.values())})
return summary, info_table, ratios_table, sector_comp, fig
def download_report(info_table, ratios_table, sector_comp, summary):
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w') as f:
info_table.to_csv(f, index=False)
f.write("\n")
ratios_table.to_csv(f, index=False)
f.write("\n")
sector_comp.to_csv(f, index=False)
f.write("\nSummary\n")
f.write(summary)
file_path = f.name
return file_path
# Gradio UI
with gr.Blocks() as iface:
with gr.Row():
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", info="Ticker symbol of the company to analyze.")
eps = gr.Number(label="Assumed EPS", value=5.0, info="Earnings Per Share (EPS) for P/E calculation.")
growth = gr.Number(label="Assumed Growth Rate", value=0.1, info="Expected annual growth rate for PEG.")
book = gr.Number(label="Assumed Book Value", value=500000000, info="Total net assets for P/B calculation.")
with gr.Tabs():
with gr.Tab("AI Research Summary"):
output_summary = gr.Textbox()
with gr.Tab("Company Snapshot"):
output_info = gr.Dataframe()
with gr.Tab("Valuation Ratios"):
output_ratios = gr.Dataframe()
with gr.Tab("Sector Comparison"):
output_sector = gr.Dataframe()
with gr.Tab("Historical Price Chart"):
output_chart = gr.Plot()
submit_btn = gr.Button("Run Analysis")
download_btn = gr.Button("Download Report")
file_output = gr.File()
submit_btn.click(
fn=stock_research,
inputs=[symbol, eps, growth, book],
outputs=[output_summary, output_info, output_ratios, output_sector, output_chart]
)
download_btn.click(
fn=download_report,
inputs=[output_info, output_ratios, output_sector, output_summary],
outputs=file_output
)
if __name__ == "__main__":
iface.launch()