import pandas as pd import matplotlib.pyplot as plt import gradio as gr import requests import os import datetime import tempfile import numpy as np # Your Hugging Face API Token HF_Token = os.getenv("HF_Token") API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3" headers = { "Authorization": f"Bearer {HF_Token}" } def query_mistral(question): payload = {"inputs": question, "parameters": {"max_length": 256}} response = requests.post(API_URL, headers=headers, json=payload) try: output = response.json() # Check for standard output format if isinstance(output, list) and "generated_text" in output[0]: return output[0]["generated_text"] else: # Return error message or full object for debugging return f"[Error from Mistral API]: {output}" except Exception as e: return f"[Exception in query_mistral]: {str(e)}" POLYGON_API_KEY = os.getenv("POLYGON_API_KEY") sector_averages = { "Technology": {"P/E Ratio": 25, "P/S Ratio": 5, "P/B Ratio": 6}, "Healthcare": {"P/E Ratio": 20, "P/S Ratio": 4, "P/B Ratio": 3}, "Financials": {"P/E Ratio": 15, "P/S Ratio": 2, "P/B Ratio": 1.5}, "Energy": {"P/E Ratio": 12, "P/S Ratio": 1.2, "P/B Ratio": 1.3}, } def safe_request(url): try: response = requests.get(url) response.raise_for_status() return response except: return None def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000): pe = price / eps if eps else 0 ps = market_cap / total_revenue if total_revenue else 0 pb = market_cap / book_value if book_value else 0 peg = pe / (growth * 100) if growth else 0 div_yield = (dividend_amount / price) * 100 if price else 0 debt_equity = np.random.uniform(0.2, 2.0) roe = np.random.uniform(5, 25) free_cash_flow = np.random.uniform(50000000, 500000000) beta = np.random.uniform(0.8, 1.5) ev_ebitda = np.random.uniform(8, 20) # Placeholder random value price_cash_flow = np.random.uniform(10, 25) operating_margin = np.random.uniform(10, 30) revenue_growth = np.random.uniform(5, 20) return { 'P/E Ratio': pe, 'P/S Ratio': ps, 'P/B Ratio': pb, 'PEG Ratio': peg, 'Dividend Yield': div_yield, 'Debt/Equity Ratio': debt_equity, 'Return on Equity (%)': roe, 'Free Cash Flow ($)': free_cash_flow, 'Beta (Volatility)': beta, 'EV/EBITDA': ev_ebitda, 'Price/Cash Flow': price_cash_flow, 'Operating Margin (%)': operating_margin, 'Revenue Growth (%)': revenue_growth } def stock_research(symbol, eps=5.0, growth=0.1, book=500000000): info = {"Name": symbol, "Industry": "Tech", "Sector": "Technology", "Market Cap": np.random.randint(1000000000, 3000000000)} price = np.random.uniform(100, 300) dividends = np.random.uniform(0, 5) dates = pd.date_range(datetime.date.today() - datetime.timedelta(days=365), periods=365) prices = np.random.uniform(100, 300, size=365) ratios = calculate_ratios(info['Market Cap'], info['Market Cap']/5, price, dividends, eps, growth, book) ratios = {k: round(v, 2) for k, v in ratios.items()} sector_comp = pd.DataFrame({"Metric": ["Example"], "Value": [0]}) smooth_prices = np.convolve(prices, np.ones(5)/5, mode='valid') fig, ax = plt.subplots() ax.plot(dates[:len(smooth_prices)], smooth_prices) ax.set_title(f"{symbol} Historical Price (Smoothed)") ax.set_xlabel("Date") ax.set_ylabel("Price ($)") ax.grid(True) info_table = pd.DataFrame(info.items(), columns=["Metric", "Value"]) ratios_table = pd.DataFrame(ratios.items(), columns=["Metric", "Value"]) financial_health_metrics = [ "Debt/Equity Ratio", "Return on Equity (%)", "Free Cash Flow ($)", "Beta (Volatility)" ] financial_health = ratios_table[ratios_table["Metric"].isin(financial_health_metrics)] recommendation = "Hold" if ratios['P/E Ratio'] < 15 and ratios['Debt/Equity Ratio'] < 1.0 and ratios['Return on Equity (%)'] > 10 and ratios['Beta (Volatility)'] < 1.2: recommendation = "Buy" elif ratios['P/E Ratio'] > 30 or ratios['Debt/Equity Ratio'] > 2.0 or ratios['Return on Equity (%)'] < 5: recommendation = "Sell" report = ( f"Company Overview:\n" f"Name: {info.get('Name', 'N/A')}\n" f"Industry: {info.get('Industry', 'N/A')}\n" f"Sector: {info.get('Sector', 'N/A')}\n" f"Market Cap: ${info.get('Market Cap', 0):,.2f}\n\n" f"Financial Metrics:\n" f"P/E Ratio: {ratios.get('P/E Ratio', 'N/A')}\n" f"P/S Ratio: {ratios.get('P/S Ratio', 'N/A')}\n" f"P/B Ratio: {ratios.get('P/B Ratio', 'N/A')}\n" f"PEG Ratio: {ratios.get('PEG Ratio', 'N/A')}\n" f"Dividend Yield: {ratios.get('Dividend Yield', 'N/A')}%\n" f"Debt/Equity Ratio: {ratios.get('Debt/Equity Ratio', 'N/A')}\n" f"Return on Equity: {ratios.get('Return on Equity (%)', 'N/A')}%\n" f"Free Cash Flow: ${ratios.get('Free Cash Flow ($)', 0):,.2f}\n" f"Beta (Volatility): {ratios.get('Beta (Volatility)', 'N/A')}\n" f"EV/EBITDA: {ratios.get('EV/EBITDA', 'N/A')}\n" f"Price/Cash Flow: {ratios.get('Price/Cash Flow', 'N/A')}\n" f"Operating Margin: {ratios.get('Operating Margin (%)', 'N/A')}%\n" f"Revenue Growth: {ratios.get('Revenue Growth (%)', 'N/A')}%\n" ) summary_prompt = f"Summarize this financial report clearly and briefly:\n\n{report}" ai_summary = query_mistral(summary_prompt) financial_health = pd.concat([ financial_health, pd.DataFrame([{"Metric": "Recommendation", "Value": recommendation}]) ], ignore_index=True) return ai_summary, info_table, ratios_table, financial_health, sector_comp, fig # Theme Selection selected_theme = os.getenv("APP_THEME", "light") if selected_theme == "dark": theme = gr.themes.Base() else: theme = gr.themes.Soft(primary_hue="blue") # Fetch Functions def get_company_info(symbol): url = f"https://api.polygon.io/v3/reference/tickers/{symbol}?apiKey={POLYGON_API_KEY}" response = safe_request(url) if response: data = response.json().get('results', {}) sector = data.get('market', 'Technology') if sector.lower() == 'stocks': sector = 'Technology' return { 'Name': data.get('name', 'N/A'), 'Industry': data.get('sic_description', 'N/A'), 'Sector': sector, 'Market Cap': data.get('market_cap', 0), 'Total Revenue': data.get('total_employees', 0) * 100000 } return None def get_current_price(symbol): url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/prev?adjusted=true&apiKey={POLYGON_API_KEY}" response = safe_request(url) if response: return response.json()['results'][0]['c'] return None def get_dividends(symbol): url = f"https://api.polygon.io/v3/reference/dividends?ticker={symbol}&apiKey={POLYGON_API_KEY}" response = safe_request(url) if response: return response.json()['results'][0].get('cash_amount', 0) return 0 def get_historical_prices(symbol): end = datetime.date.today() start = end - datetime.timedelta(days=365) url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start}/{end}?adjusted=true&sort=asc&apiKey={POLYGON_API_KEY}" response = safe_request(url) if response: results = response.json()['results'] dates = [datetime.datetime.fromtimestamp(r['t']/1000) for r in results] prices = [r['c'] for r in results] return dates, prices return [], [] # Financial Calculations def calculate_ratios(market_cap, total_revenue, price, dividend_amount, eps=5.0, growth=0.1, book_value=500000000): pe = price / eps if eps else 0 ps = market_cap / total_revenue if total_revenue else 0 pb = market_cap / book_value if book_value else 0 peg = pe / (growth * 100) if growth else 0 div_yield = (dividend_amount / price) * 100 if price else 0 return { 'P/E Ratio': pe, 'P/S Ratio': ps, 'P/B Ratio': pb, 'PEG Ratio': peg, 'Dividend Yield': div_yield } def compare_to_sector(sector, ratios): if sector.lower() == 'stocks': sector = 'Technology' averages = sector_averages.get(sector, {}) if not averages: return pd.DataFrame({"Metric": ["Sector data not available"], "Value": ["N/A"]}) data = { "Ratio": [], "Stock Value": [], "Sector Average": [], "Difference": [] } for key in averages: stock_value = ratios.get(key, 0) sector_value = averages.get(key, 0) diff = stock_value - sector_value # Add emoji based on difference if diff < 0: diff_display = f"{diff:.2f} 🟢" elif diff > 0: diff_display = f"{diff:.2f} 🔴" else: diff_display = f"{diff:.2f} ⚪" data["Ratio"].append(key) data["Stock Value"].append(round(stock_value, 2)) data["Sector Average"].append(round(sector_value, 2)) data["Difference"].append(diff_display) return pd.DataFrame(data) def generate_summary(info, ratios): recommendation = "Hold" if ratios['P/E Ratio'] < 15 and ratios['P/B Ratio'] < 2 and ratios['PEG Ratio'] < 1.0 and ratios['Dividend Yield'] > 2: recommendation = "Buy" elif ratios['P/E Ratio'] > 30 and ratios['P/B Ratio'] > 5 and ratios['PEG Ratio'] > 2.0: recommendation = "Sell" report = ( f"Company Overview:\n" f"Name: {info['Name']}\n" f"Industry: {info['Industry']}\n" f"Sector: {info['Sector']}\n" f"Market Cap: ${info['Market Cap']:,.2f}\n\n" f"Financial Metrics:\n" f"P/E Ratio: {ratios['P/E Ratio']:.2f}\n" f"P/S Ratio: {ratios['P/S Ratio']:.2f}\n" f"P/B Ratio: {ratios['P/B Ratio']:.2f}\n" f"PEG Ratio: {ratios['PEG Ratio']:.2f}\n" f"Dividend Yield: {ratios['Dividend Yield']:.2f}%\n\n" f"Recommended Investment Action: {recommendation}.\n" ) # Use Mistral to generate the summary summary_prompt = f"Summarize the following financial report clearly and briefly:\n\n{report}" return query_mistral(summary_prompt) # Gradio UI with gr.Blocks(theme=theme) as iface: with gr.Row(): symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)") eps = gr.Number(label="Assumed EPS", value=5.0) growth = gr.Number(label="Assumed Growth Rate", value=0.1) book = gr.Number(label="Assumed Book Value", value=500000000) with gr.Tabs() as tabs: with gr.Tab("AI Research Summary"): output_summary = gr.Textbox() with gr.Tab("Company Snapshot"): output_info = gr.Dataframe() with gr.Tab("Valuation Ratios"): output_ratios = gr.Dataframe(label="Valuation Ratios") with gr.Tab("Financial Health"): output_health = gr.Dataframe() with gr.Tab("Sector Comparison"): output_sector = gr.Dataframe() with gr.Tab("Historical Price Chart"): output_chart = gr.Plot() with gr.Tab("Ask About Investing"): user_question = gr.Textbox(label="Ask about investing...") answer_box = gr.Textbox(label="Answer") ask_button = gr.Button("Get Answer") with gr.Row(): ask_button.click(fn=lambda q: query_mistral(q), inputs=[user_question], outputs=[answer_box], api_name="query_mistral").then( lambda: "", inputs=[], outputs=[user_question] ) with gr.Row(): submit_btn = gr.Button("Run Analysis") reset_btn = gr.Button("Reset All Fields") download_btn = gr.Button("Download Report") file_output = gr.File() submit_btn.click(fn=stock_research, inputs=[symbol, eps, growth, book], outputs=[output_summary, output_info, output_ratios, output_health, output_sector, output_chart]) def reset_fields(): return "", 5.0, 0.1, 500000000, "", "", "", "", None reset_btn.click( fn=reset_fields, inputs=[], outputs=[ symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart ] ) def reset_fields(): return "", 5.0, 0.1, 500000000, "", "", "", "", None reset_btn.click(fn=reset_fields, inputs=[], outputs=[symbol, eps, growth, book, output_summary, output_info, output_ratios, output_sector, output_chart]) if __name__ == "__main__": iface.launch()