Spaces:
Sleeping
Sleeping
# mdx_core.py | |
import torch | |
import numpy as np | |
import onnxruntime as ort | |
import hashlib | |
import queue | |
import threading | |
from tqdm import tqdm | |
class MDXModel: | |
def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000): | |
self.dim_f = dim_f | |
self.dim_t = dim_t | |
self.dim_c = 4 | |
self.n_fft = n_fft | |
self.hop = hop | |
self.stem_name = stem_name | |
self.compensation = compensation | |
self.n_bins = self.n_fft // 2 + 1 | |
self.chunk_size = hop * (self.dim_t - 1) | |
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device) | |
self.freq_pad = torch.zeros([1, self.dim_c, self.n_bins - self.dim_f, self.dim_t]).to(device) | |
def stft(self, x): | |
x = x.reshape([-1, self.chunk_size]) | |
x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, | |
center=True, return_complex=True) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t]) | |
return x[:, :, :self.dim_f] | |
def istft(self, x, freq_pad=None): | |
freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad | |
x = torch.cat([x, freq_pad], -2) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t]) | |
x = x.permute([0, 2, 3, 1]).contiguous() | |
x = torch.view_as_complex(x) | |
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True) | |
return x.reshape([-1, 2, self.chunk_size]) | |
class MDX: | |
DEFAULT_SR = 44100 | |
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR | |
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR | |
def __init__(self, model_path: str, params: MDXModel, processor=0): | |
self.device = torch.device(f"cuda:{processor}" if processor >= 0 else "cpu") | |
self.provider = ["CUDAExecutionProvider"] if processor >= 0 else ["CPUExecutionProvider"] | |
self.model = params | |
self.ort = ort.InferenceSession(model_path, providers=self.provider) | |
self.ort.run(None, {"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()}) | |
self.process = lambda spec: self.ort.run(None, {"input": spec.cpu().numpy()})[0] | |
self.prog = None | |
def get_hash(model_path): | |
try: | |
with open(model_path, "rb") as f: | |
f.seek(-10000 * 1024, 2) | |
return hashlib.md5(f.read()).hexdigest() | |
except: | |
return hashlib.md5(open(model_path, "rb").read()).hexdigest() | |
def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE): | |
if combine: | |
processed_wave = None | |
for segment_count, segment in enumerate(wave): | |
start = 0 if segment_count == 0 else margin_size | |
end = None if segment_count == len(wave) - 1 else -margin_size | |
if margin_size == 0: | |
end = None | |
part = segment[:, start:end] | |
processed_wave = part if processed_wave is None else np.concatenate((processed_wave, part), axis=-1) | |
else: | |
processed_wave = [] | |
sample_count = wave.shape[-1] | |
if chunk_size <= 0 or chunk_size > sample_count: | |
chunk_size = sample_count | |
if margin_size > chunk_size: | |
margin_size = chunk_size | |
for segment_count, skip in enumerate(range(0, sample_count, chunk_size)): | |
margin = 0 if segment_count == 0 else margin_size | |
end = min(skip + chunk_size + margin_size, sample_count) | |
start = skip - margin | |
processed_wave.append(wave[:, start:end].copy()) | |
if end == sample_count: | |
break | |
return processed_wave | |
def pad_wave(self, wave): | |
n_sample = wave.shape[1] | |
trim = self.model.n_fft // 2 | |
gen_size = self.model.chunk_size - 2 * trim | |
pad = gen_size - n_sample % gen_size | |
wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1) | |
mix_waves = [torch.tensor(wave_p[:, i:i + self.model.chunk_size], dtype=torch.float32).to(self.device) | |
for i in range(0, n_sample + pad, gen_size)] | |
return torch.stack(mix_waves), pad, trim | |
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int): | |
mix_waves = mix_waves.split(1) | |
with torch.no_grad(): | |
pw = [] | |
for mix_wave in mix_waves: | |
self.prog.update() | |
spec = self.model.stft(mix_wave) | |
processed_spec = torch.tensor(self.process(spec)) | |
processed_wav = self.model.istft(processed_spec.to(self.device)) | |
result = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy() | |
pw.append(result) | |
q.put({_id: np.concatenate(pw, axis=-1)[:, :-pad]}) | |
def process_wave(self, wave: np.array, mt_threads=1): | |
self.prog = tqdm(total=0) | |
chunk = wave.shape[-1] // mt_threads | |
waves = self.segment(wave, False, chunk) | |
q = queue.Queue() | |
threads = [] | |
for c, batch in enumerate(waves): | |
mix_waves, pad, trim = self.pad_wave(batch) | |
self.prog.total = len(mix_waves) * mt_threads | |
thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c)) | |
thread.start() | |
threads.append(thread) | |
for thread in threads: | |
thread.join() | |
self.prog.close() | |
processed_batches = [q.get() for _ in range(len(waves))] | |
processed_batches.sort(key=lambda d: list(d.keys())[0]) | |
return self.segment([list(wave.values())[0] for wave in processed_batches], True, chunk) | |