Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,1474 +1,108 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
os.system("pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/")
|
4 |
-
import gc
|
5 |
-
import hashlib
|
6 |
-
import queue
|
7 |
-
import threading
|
8 |
-
import json
|
9 |
-
import shlex
|
10 |
-
import sys
|
11 |
import subprocess
|
12 |
-
import librosa
|
13 |
-
import numpy as np
|
14 |
-
import soundfile as sf
|
15 |
-
import torch
|
16 |
-
from tqdm import tqdm
|
17 |
-
from utils import (
|
18 |
-
remove_directory_contents,
|
19 |
-
create_directories,
|
20 |
-
download_manager,
|
21 |
-
)
|
22 |
-
import random
|
23 |
-
import spaces
|
24 |
-
from utils import logger
|
25 |
-
import onnxruntime as ort
|
26 |
-
import warnings
|
27 |
-
import spaces
|
28 |
import gradio as gr
|
29 |
import logging
|
30 |
-
import
|
31 |
-
import traceback
|
32 |
-
from pedalboard import Pedalboard, Reverb, Delay, Chorus, Compressor, Gain, HighpassFilter, LowpassFilter
|
33 |
-
from pedalboard.io import AudioFile
|
34 |
-
import numpy as np
|
35 |
-
import yt_dlp
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
description = "This demo uses the MDX-Net models for vocal and background sound separation."
|
41 |
-
theme = "NoCrypt/miku"
|
42 |
|
43 |
-
stem_naming = {
|
44 |
-
"Vocals": "Instrumental",
|
45 |
-
"Other": "Instruments",
|
46 |
-
"Instrumental": "Vocals",
|
47 |
-
"Drums": "Drumless",
|
48 |
-
"Bass": "Bassless",
|
49 |
-
}
|
50 |
-
|
51 |
-
|
52 |
-
class MDXModel:
|
53 |
-
def __init__(
|
54 |
-
self,
|
55 |
-
device,
|
56 |
-
dim_f,
|
57 |
-
dim_t,
|
58 |
-
n_fft,
|
59 |
-
hop=1024,
|
60 |
-
stem_name=None,
|
61 |
-
compensation=1.000,
|
62 |
-
):
|
63 |
-
self.dim_f = dim_f
|
64 |
-
self.dim_t = dim_t
|
65 |
-
self.dim_c = 4
|
66 |
-
self.n_fft = n_fft
|
67 |
-
self.hop = hop
|
68 |
-
self.stem_name = stem_name
|
69 |
-
self.compensation = compensation
|
70 |
-
|
71 |
-
self.n_bins = self.n_fft // 2 + 1
|
72 |
-
self.chunk_size = hop * (self.dim_t - 1)
|
73 |
-
self.window = torch.hann_window(
|
74 |
-
window_length=self.n_fft, periodic=True
|
75 |
-
).to(device)
|
76 |
-
|
77 |
-
out_c = self.dim_c
|
78 |
-
|
79 |
-
self.freq_pad = torch.zeros(
|
80 |
-
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
|
81 |
-
).to(device)
|
82 |
-
|
83 |
-
def stft(self, x):
|
84 |
-
x = x.reshape([-1, self.chunk_size])
|
85 |
-
x = torch.stft(
|
86 |
-
x,
|
87 |
-
n_fft=self.n_fft,
|
88 |
-
hop_length=self.hop,
|
89 |
-
window=self.window,
|
90 |
-
center=True,
|
91 |
-
return_complex=True,
|
92 |
-
)
|
93 |
-
x = torch.view_as_real(x)
|
94 |
-
x = x.permute([0, 3, 1, 2])
|
95 |
-
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
96 |
-
[-1, 4, self.n_bins, self.dim_t]
|
97 |
-
)
|
98 |
-
return x[:, :, : self.dim_f]
|
99 |
-
|
100 |
-
def istft(self, x, freq_pad=None):
|
101 |
-
freq_pad = (
|
102 |
-
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
103 |
-
if freq_pad is None
|
104 |
-
else freq_pad
|
105 |
-
)
|
106 |
-
x = torch.cat([x, freq_pad], -2)
|
107 |
-
# c = 4*2 if self.target_name=='*' else 2
|
108 |
-
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
109 |
-
[-1, 2, self.n_bins, self.dim_t]
|
110 |
-
)
|
111 |
-
x = x.permute([0, 2, 3, 1])
|
112 |
-
x = x.contiguous()
|
113 |
-
x = torch.view_as_complex(x)
|
114 |
-
x = torch.istft(
|
115 |
-
x,
|
116 |
-
n_fft=self.n_fft,
|
117 |
-
hop_length=self.hop,
|
118 |
-
window=self.window,
|
119 |
-
center=True,
|
120 |
-
)
|
121 |
-
return x.reshape([-1, 2, self.chunk_size])
|
122 |
-
|
123 |
-
|
124 |
-
class MDX:
|
125 |
-
DEFAULT_SR = 44100
|
126 |
-
# Unit: seconds
|
127 |
-
DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR
|
128 |
-
DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR
|
129 |
-
|
130 |
-
def __init__(
|
131 |
-
self, model_path: str, params: MDXModel, processor=0
|
132 |
-
):
|
133 |
-
# Set the device and the provider (CPU or CUDA)
|
134 |
-
self.device = (
|
135 |
-
torch.device(f"cuda:{processor}")
|
136 |
-
if processor >= 0
|
137 |
-
else torch.device("cpu")
|
138 |
-
)
|
139 |
-
self.provider = (
|
140 |
-
["CUDAExecutionProvider"]
|
141 |
-
if processor >= 0
|
142 |
-
else ["CPUExecutionProvider"]
|
143 |
-
)
|
144 |
-
|
145 |
-
self.model = params
|
146 |
-
|
147 |
-
# Load the ONNX model using ONNX Runtime
|
148 |
-
self.ort = ort.InferenceSession(model_path, providers=self.provider)
|
149 |
-
# Preload the model for faster performance
|
150 |
-
self.ort.run(
|
151 |
-
None,
|
152 |
-
{"input": torch.rand(1, 4, params.dim_f, params.dim_t).numpy()},
|
153 |
-
)
|
154 |
-
self.process = lambda spec: self.ort.run(
|
155 |
-
None, {"input": spec.cpu().numpy()}
|
156 |
-
)[0]
|
157 |
-
|
158 |
-
self.prog = None
|
159 |
-
|
160 |
-
@staticmethod
|
161 |
-
def get_hash(model_path):
|
162 |
-
try:
|
163 |
-
with open(model_path, "rb") as f:
|
164 |
-
f.seek(-10000 * 1024, 2)
|
165 |
-
model_hash = hashlib.md5(f.read()).hexdigest()
|
166 |
-
except: # noqa
|
167 |
-
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
|
168 |
-
|
169 |
-
return model_hash
|
170 |
-
|
171 |
-
@staticmethod
|
172 |
-
def segment(
|
173 |
-
wave,
|
174 |
-
combine=True,
|
175 |
-
chunk_size=DEFAULT_CHUNK_SIZE,
|
176 |
-
margin_size=DEFAULT_MARGIN_SIZE,
|
177 |
-
):
|
178 |
-
"""
|
179 |
-
Segment or join segmented wave array
|
180 |
-
Args:
|
181 |
-
wave: (np.array) Wave array to be segmented or joined
|
182 |
-
combine: (bool) If True, combines segmented wave array.
|
183 |
-
If False, segments wave array.
|
184 |
-
chunk_size: (int) Size of each segment (in samples)
|
185 |
-
margin_size: (int) Size of margin between segments (in samples)
|
186 |
-
Returns:
|
187 |
-
numpy array: Segmented or joined wave array
|
188 |
-
"""
|
189 |
-
|
190 |
-
if combine:
|
191 |
-
# Initializing as None instead of [] for later numpy array concatenation
|
192 |
-
processed_wave = None
|
193 |
-
for segment_count, segment in enumerate(wave):
|
194 |
-
start = 0 if segment_count == 0 else margin_size
|
195 |
-
end = None if segment_count == len(wave) - 1 else -margin_size
|
196 |
-
if margin_size == 0:
|
197 |
-
end = None
|
198 |
-
if processed_wave is None: # Create array for first segment
|
199 |
-
processed_wave = segment[:, start:end]
|
200 |
-
else: # Concatenate to existing array for subsequent segments
|
201 |
-
processed_wave = np.concatenate(
|
202 |
-
(processed_wave, segment[:, start:end]), axis=-1
|
203 |
-
)
|
204 |
-
|
205 |
-
else:
|
206 |
-
processed_wave = []
|
207 |
-
sample_count = wave.shape[-1]
|
208 |
-
|
209 |
-
if chunk_size <= 0 or chunk_size > sample_count:
|
210 |
-
chunk_size = sample_count
|
211 |
-
|
212 |
-
if margin_size > chunk_size:
|
213 |
-
margin_size = chunk_size
|
214 |
-
|
215 |
-
for segment_count, skip in enumerate(
|
216 |
-
range(0, sample_count, chunk_size)
|
217 |
-
):
|
218 |
-
margin = 0 if segment_count == 0 else margin_size
|
219 |
-
end = min(skip + chunk_size + margin_size, sample_count)
|
220 |
-
start = skip - margin
|
221 |
-
|
222 |
-
cut = wave[:, start:end].copy()
|
223 |
-
processed_wave.append(cut)
|
224 |
-
|
225 |
-
if end == sample_count:
|
226 |
-
break
|
227 |
-
|
228 |
-
return processed_wave
|
229 |
-
|
230 |
-
def pad_wave(self, wave):
|
231 |
-
"""
|
232 |
-
Pad the wave array to match the required chunk size
|
233 |
-
Args:
|
234 |
-
wave: (np.array) Wave array to be padded
|
235 |
-
Returns:
|
236 |
-
tuple: (padded_wave, pad, trim)
|
237 |
-
- padded_wave: Padded wave array
|
238 |
-
- pad: Number of samples that were padded
|
239 |
-
- trim: Number of samples that were trimmed
|
240 |
-
"""
|
241 |
-
n_sample = wave.shape[1]
|
242 |
-
trim = self.model.n_fft // 2
|
243 |
-
gen_size = self.model.chunk_size - 2 * trim
|
244 |
-
pad = gen_size - n_sample % gen_size
|
245 |
-
|
246 |
-
# Padded wave
|
247 |
-
wave_p = np.concatenate(
|
248 |
-
(
|
249 |
-
np.zeros((2, trim)),
|
250 |
-
wave,
|
251 |
-
np.zeros((2, pad)),
|
252 |
-
np.zeros((2, trim)),
|
253 |
-
),
|
254 |
-
1,
|
255 |
-
)
|
256 |
-
|
257 |
-
mix_waves = []
|
258 |
-
for i in range(0, n_sample + pad, gen_size):
|
259 |
-
waves = np.array(wave_p[:, i:i + self.model.chunk_size])
|
260 |
-
mix_waves.append(waves)
|
261 |
-
|
262 |
-
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(
|
263 |
-
self.device
|
264 |
-
)
|
265 |
-
|
266 |
-
return mix_waves, pad, trim
|
267 |
-
|
268 |
-
def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int):
|
269 |
-
"""
|
270 |
-
Process each wave segment in a multi-threaded environment
|
271 |
-
Args:
|
272 |
-
mix_waves: (torch.Tensor) Wave segments to be processed
|
273 |
-
trim: (int) Number of samples trimmed during padding
|
274 |
-
pad: (int) Number of samples padded during padding
|
275 |
-
q: (queue.Queue) Queue to hold the processed wave segments
|
276 |
-
_id: (int) Identifier of the processed wave segment
|
277 |
-
Returns:
|
278 |
-
numpy array: Processed wave segment
|
279 |
-
"""
|
280 |
-
mix_waves = mix_waves.split(1)
|
281 |
-
with torch.no_grad():
|
282 |
-
pw = []
|
283 |
-
for mix_wave in mix_waves:
|
284 |
-
self.prog.update()
|
285 |
-
spec = self.model.stft(mix_wave)
|
286 |
-
processed_spec = torch.tensor(self.process(spec))
|
287 |
-
processed_wav = self.model.istft(
|
288 |
-
processed_spec.to(self.device)
|
289 |
-
)
|
290 |
-
processed_wav = (
|
291 |
-
processed_wav[:, :, trim:-trim]
|
292 |
-
.transpose(0, 1)
|
293 |
-
.reshape(2, -1)
|
294 |
-
.cpu()
|
295 |
-
.numpy()
|
296 |
-
)
|
297 |
-
pw.append(processed_wav)
|
298 |
-
processed_signal = np.concatenate(pw, axis=-1)[:, :-pad]
|
299 |
-
q.put({_id: processed_signal})
|
300 |
-
return processed_signal
|
301 |
-
|
302 |
-
def process_wave(self, wave: np.array, mt_threads=1):
|
303 |
-
"""
|
304 |
-
Process the wave array in a multi-threaded environment
|
305 |
-
Args:
|
306 |
-
wave: (np.array) Wave array to be processed
|
307 |
-
mt_threads: (int) Number of threads to be used for processing
|
308 |
-
Returns:
|
309 |
-
numpy array: Processed wave array
|
310 |
-
"""
|
311 |
-
self.prog = tqdm(total=0)
|
312 |
-
chunk = wave.shape[-1] // mt_threads
|
313 |
-
waves = self.segment(wave, False, chunk)
|
314 |
-
|
315 |
-
# Create a queue to hold the processed wave segments
|
316 |
-
q = queue.Queue()
|
317 |
-
threads = []
|
318 |
-
for c, batch in enumerate(waves):
|
319 |
-
mix_waves, pad, trim = self.pad_wave(batch)
|
320 |
-
self.prog.total = len(mix_waves) * mt_threads
|
321 |
-
thread = threading.Thread(
|
322 |
-
target=self._process_wave, args=(mix_waves, trim, pad, q, c)
|
323 |
-
)
|
324 |
-
thread.start()
|
325 |
-
threads.append(thread)
|
326 |
-
for thread in threads:
|
327 |
-
thread.join()
|
328 |
-
self.prog.close()
|
329 |
-
|
330 |
-
processed_batches = []
|
331 |
-
while not q.empty():
|
332 |
-
processed_batches.append(q.get())
|
333 |
-
processed_batches = [
|
334 |
-
list(wave.values())[0]
|
335 |
-
for wave in sorted(
|
336 |
-
processed_batches, key=lambda d: list(d.keys())[0]
|
337 |
-
)
|
338 |
-
]
|
339 |
-
assert len(processed_batches) == len(
|
340 |
-
waves
|
341 |
-
), "Incomplete processed batches, please reduce batch size!"
|
342 |
-
return self.segment(processed_batches, True, chunk)
|
343 |
-
|
344 |
-
|
345 |
-
@spaces.GPU()
|
346 |
-
def run_mdx(
|
347 |
-
model_params,
|
348 |
-
output_dir,
|
349 |
-
model_path,
|
350 |
-
filename,
|
351 |
-
exclude_main=False,
|
352 |
-
exclude_inversion=False,
|
353 |
-
suffix=None,
|
354 |
-
invert_suffix=None,
|
355 |
-
denoise=False,
|
356 |
-
keep_orig=True,
|
357 |
-
m_threads=2,
|
358 |
-
device_base="cuda",
|
359 |
-
):
|
360 |
-
|
361 |
-
if device_base == "cuda":
|
362 |
-
device = torch.device("cuda:0")
|
363 |
-
processor_num = 0
|
364 |
-
device_properties = torch.cuda.get_device_properties(device)
|
365 |
-
vram_gb = device_properties.total_memory / 1024**3
|
366 |
-
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
|
367 |
-
logger.info(f"threads: {m_threads} vram: {vram_gb}")
|
368 |
-
else:
|
369 |
-
device = torch.device("cpu")
|
370 |
-
processor_num = -1
|
371 |
-
m_threads = 1
|
372 |
-
|
373 |
-
model_hash = MDX.get_hash(model_path)
|
374 |
-
mp = model_params.get(model_hash)
|
375 |
-
model = MDXModel(
|
376 |
-
device,
|
377 |
-
dim_f=mp["mdx_dim_f_set"],
|
378 |
-
dim_t=2 ** mp["mdx_dim_t_set"],
|
379 |
-
n_fft=mp["mdx_n_fft_scale_set"],
|
380 |
-
stem_name=mp["primary_stem"],
|
381 |
-
compensation=mp["compensate"],
|
382 |
-
)
|
383 |
-
|
384 |
-
mdx_sess = MDX(model_path, model, processor=processor_num)
|
385 |
-
wave, sr = librosa.load(filename, mono=False, sr=44100)
|
386 |
-
# normalizing input wave gives better output
|
387 |
-
peak = max(np.max(wave), abs(np.min(wave)))
|
388 |
-
wave /= peak
|
389 |
-
if denoise:
|
390 |
-
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (
|
391 |
-
mdx_sess.process_wave(wave, m_threads)
|
392 |
-
)
|
393 |
-
wave_processed *= 0.5
|
394 |
-
else:
|
395 |
-
wave_processed = mdx_sess.process_wave(wave, m_threads)
|
396 |
-
# return to previous peak
|
397 |
-
wave_processed *= peak
|
398 |
-
stem_name = model.stem_name if suffix is None else suffix
|
399 |
-
|
400 |
-
main_filepath = None
|
401 |
-
if not exclude_main:
|
402 |
-
main_filepath = os.path.join(
|
403 |
-
output_dir,
|
404 |
-
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
405 |
-
)
|
406 |
-
sf.write(main_filepath, wave_processed.T, sr)
|
407 |
-
|
408 |
-
invert_filepath = None
|
409 |
-
if not exclude_inversion:
|
410 |
-
diff_stem_name = (
|
411 |
-
stem_naming.get(stem_name)
|
412 |
-
if invert_suffix is None
|
413 |
-
else invert_suffix
|
414 |
-
)
|
415 |
-
stem_name = (
|
416 |
-
f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
|
417 |
-
)
|
418 |
-
invert_filepath = os.path.join(
|
419 |
-
output_dir,
|
420 |
-
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
421 |
-
)
|
422 |
-
sf.write(
|
423 |
-
invert_filepath,
|
424 |
-
(-wave_processed.T * model.compensation) + wave.T,
|
425 |
-
sr,
|
426 |
-
)
|
427 |
-
|
428 |
-
if not keep_orig:
|
429 |
-
os.remove(filename)
|
430 |
-
|
431 |
-
del mdx_sess, wave_processed, wave
|
432 |
-
gc.collect()
|
433 |
-
torch.cuda.empty_cache()
|
434 |
-
return main_filepath, invert_filepath
|
435 |
-
|
436 |
-
|
437 |
-
def run_mdx_beta(
|
438 |
-
model_params,
|
439 |
-
output_dir,
|
440 |
-
model_path,
|
441 |
-
filename,
|
442 |
-
exclude_main=False,
|
443 |
-
exclude_inversion=False,
|
444 |
-
suffix=None,
|
445 |
-
invert_suffix=None,
|
446 |
-
denoise=False,
|
447 |
-
keep_orig=True,
|
448 |
-
m_threads=2,
|
449 |
-
device_base="",
|
450 |
-
):
|
451 |
-
|
452 |
-
m_threads = 1
|
453 |
-
duration = librosa.get_duration(filename=filename)
|
454 |
-
if duration >= 60 and duration <= 120:
|
455 |
-
m_threads = 8
|
456 |
-
elif duration > 120:
|
457 |
-
m_threads = 16
|
458 |
-
|
459 |
-
logger.info(f"threads: {m_threads}")
|
460 |
-
|
461 |
-
model_hash = MDX.get_hash(model_path)
|
462 |
-
device = torch.device("cpu")
|
463 |
-
processor_num = -1
|
464 |
-
mp = model_params.get(model_hash)
|
465 |
-
model = MDXModel(
|
466 |
-
device,
|
467 |
-
dim_f=mp["mdx_dim_f_set"],
|
468 |
-
dim_t=2 ** mp["mdx_dim_t_set"],
|
469 |
-
n_fft=mp["mdx_n_fft_scale_set"],
|
470 |
-
stem_name=mp["primary_stem"],
|
471 |
-
compensation=mp["compensate"],
|
472 |
-
)
|
473 |
-
|
474 |
-
mdx_sess = MDX(model_path, model, processor=processor_num)
|
475 |
-
wave, sr = librosa.load(filename, mono=False, sr=44100)
|
476 |
-
# normalizing input wave gives better output
|
477 |
-
peak = max(np.max(wave), abs(np.min(wave)))
|
478 |
-
wave /= peak
|
479 |
-
if denoise:
|
480 |
-
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (
|
481 |
-
mdx_sess.process_wave(wave, m_threads)
|
482 |
-
)
|
483 |
-
wave_processed *= 0.5
|
484 |
-
else:
|
485 |
-
wave_processed = mdx_sess.process_wave(wave, m_threads)
|
486 |
-
# return to previous peak
|
487 |
-
wave_processed *= peak
|
488 |
-
stem_name = model.stem_name if suffix is None else suffix
|
489 |
-
|
490 |
-
main_filepath = None
|
491 |
-
if not exclude_main:
|
492 |
-
main_filepath = os.path.join(
|
493 |
-
output_dir,
|
494 |
-
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
495 |
-
)
|
496 |
-
sf.write(main_filepath, wave_processed.T, sr)
|
497 |
-
|
498 |
-
invert_filepath = None
|
499 |
-
if not exclude_inversion:
|
500 |
-
diff_stem_name = (
|
501 |
-
stem_naming.get(stem_name)
|
502 |
-
if invert_suffix is None
|
503 |
-
else invert_suffix
|
504 |
-
)
|
505 |
-
stem_name = (
|
506 |
-
f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
|
507 |
-
)
|
508 |
-
invert_filepath = os.path.join(
|
509 |
-
output_dir,
|
510 |
-
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
511 |
-
)
|
512 |
-
sf.write(
|
513 |
-
invert_filepath,
|
514 |
-
(-wave_processed.T * model.compensation) + wave.T,
|
515 |
-
sr,
|
516 |
-
)
|
517 |
-
|
518 |
-
if not keep_orig:
|
519 |
-
os.remove(filename)
|
520 |
-
|
521 |
-
del mdx_sess, wave_processed, wave
|
522 |
-
gc.collect()
|
523 |
-
torch.cuda.empty_cache()
|
524 |
-
return main_filepath, invert_filepath
|
525 |
-
|
526 |
-
|
527 |
-
MDX_DOWNLOAD_LINK = "https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/"
|
528 |
-
UVR_MODELS = [
|
529 |
-
"UVR-MDX-NET-Voc_FT.onnx",
|
530 |
-
"UVR_MDXNET_KARA_2.onnx",
|
531 |
-
"Reverb_HQ_By_FoxJoy.onnx",
|
532 |
-
"UVR-MDX-NET-Inst_HQ_4.onnx",
|
533 |
-
]
|
534 |
-
BASE_DIR = "." # os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
535 |
-
mdxnet_models_dir = os.path.join(BASE_DIR, "mdx_models")
|
536 |
-
output_dir = os.path.join(BASE_DIR, "clean_song_output")
|
537 |
-
|
538 |
-
|
539 |
-
def convert_to_stereo_and_wav(audio_path):
|
540 |
-
wave, sr = librosa.load(audio_path, mono=False, sr=44100)
|
541 |
-
|
542 |
-
# check if mono
|
543 |
-
if type(wave[0]) != np.ndarray or audio_path[-4:].lower() != ".wav": # noqa
|
544 |
-
stereo_path = f"{os.path.splitext(audio_path)[0]}_stereo.wav"
|
545 |
-
stereo_path = os.path.join(output_dir, stereo_path)
|
546 |
-
|
547 |
-
command = shlex.split(
|
548 |
-
f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"'
|
549 |
-
)
|
550 |
-
sub_params = {
|
551 |
-
"stdout": subprocess.PIPE,
|
552 |
-
"stderr": subprocess.PIPE,
|
553 |
-
"creationflags": subprocess.CREATE_NO_WINDOW
|
554 |
-
if sys.platform == "win32"
|
555 |
-
else 0,
|
556 |
-
}
|
557 |
-
process_wav = subprocess.Popen(command, **sub_params)
|
558 |
-
output, errors = process_wav.communicate()
|
559 |
-
if process_wav.returncode != 0 or not os.path.exists(stereo_path):
|
560 |
-
raise Exception("Error processing audio to stereo wav")
|
561 |
-
|
562 |
-
return stereo_path
|
563 |
-
else:
|
564 |
-
return audio_path
|
565 |
-
|
566 |
-
|
567 |
-
def get_hash(filepath):
|
568 |
-
with open(filepath, 'rb') as f:
|
569 |
-
file_hash = hashlib.blake2b()
|
570 |
-
while chunk := f.read(8192):
|
571 |
-
file_hash.update(chunk)
|
572 |
-
|
573 |
-
return file_hash.hexdigest()[:18]
|
574 |
-
|
575 |
-
def random_sleep():
|
576 |
-
sleep_time = round(random.uniform(5.2, 7.9), 1)
|
577 |
-
time.sleep(sleep_time)
|
578 |
-
|
579 |
-
def process_uvr_task(
|
580 |
-
orig_song_path: str = "aud_test.mp3",
|
581 |
-
main_vocals: bool = False,
|
582 |
-
dereverb: bool = True,
|
583 |
-
song_id: str = "mdx", # folder output name
|
584 |
-
only_voiceless: bool = False,
|
585 |
-
remove_files_output_dir: bool = False,
|
586 |
-
):
|
587 |
-
|
588 |
-
device_base = "cuda" if torch.cuda.is_available() else "cpu"
|
589 |
-
logger.info(f"Device: {device_base}")
|
590 |
-
|
591 |
-
if remove_files_output_dir:
|
592 |
-
remove_directory_contents(output_dir)
|
593 |
-
|
594 |
-
with open(os.path.join(mdxnet_models_dir, "data.json")) as infile:
|
595 |
-
mdx_model_params = json.load(infile)
|
596 |
-
|
597 |
-
song_output_dir = os.path.join(output_dir, song_id)
|
598 |
-
create_directories(song_output_dir)
|
599 |
-
orig_song_path = convert_to_stereo_and_wav(orig_song_path)
|
600 |
-
|
601 |
-
logger.info(f"onnxruntime device >> {ort.get_device()}")
|
602 |
-
|
603 |
-
if only_voiceless:
|
604 |
-
logger.info("Voiceless Track Separation...")
|
605 |
-
|
606 |
-
process = run_mdx(
|
607 |
-
mdx_model_params,
|
608 |
-
song_output_dir,
|
609 |
-
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Inst_HQ_4.onnx"),
|
610 |
-
orig_song_path,
|
611 |
-
suffix="Voiceless",
|
612 |
-
denoise=False,
|
613 |
-
keep_orig=True,
|
614 |
-
exclude_inversion=True,
|
615 |
-
device_base=device_base,
|
616 |
-
)
|
617 |
-
|
618 |
-
return process
|
619 |
-
|
620 |
-
logger.info("Vocal Track Isolation...")
|
621 |
-
vocals_path, instrumentals_path = run_mdx(
|
622 |
-
mdx_model_params,
|
623 |
-
song_output_dir,
|
624 |
-
os.path.join(mdxnet_models_dir, "UVR-MDX-NET-Voc_FT.onnx"),
|
625 |
-
orig_song_path,
|
626 |
-
denoise=True,
|
627 |
-
keep_orig=True,
|
628 |
-
device_base=device_base,
|
629 |
-
)
|
630 |
-
|
631 |
-
if main_vocals:
|
632 |
-
random_sleep()
|
633 |
-
msg_main = "Main Voice Separation from Supporting Vocals..."
|
634 |
-
logger.info(msg_main)
|
635 |
-
gr.Info(msg_main)
|
636 |
-
try:
|
637 |
-
backup_vocals_path, main_vocals_path = run_mdx(
|
638 |
-
mdx_model_params,
|
639 |
-
song_output_dir,
|
640 |
-
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"),
|
641 |
-
vocals_path,
|
642 |
-
suffix="Backup",
|
643 |
-
invert_suffix="Main",
|
644 |
-
denoise=True,
|
645 |
-
device_base=device_base,
|
646 |
-
)
|
647 |
-
except Exception as e:
|
648 |
-
backup_vocals_path, main_vocals_path = run_mdx_beta(
|
649 |
-
mdx_model_params,
|
650 |
-
song_output_dir,
|
651 |
-
os.path.join(mdxnet_models_dir, "UVR_MDXNET_KARA_2.onnx"),
|
652 |
-
vocals_path,
|
653 |
-
suffix="Backup",
|
654 |
-
invert_suffix="Main",
|
655 |
-
denoise=True,
|
656 |
-
device_base=device_base,
|
657 |
-
)
|
658 |
-
else:
|
659 |
-
backup_vocals_path, main_vocals_path = None, vocals_path
|
660 |
-
|
661 |
-
if dereverb:
|
662 |
-
random_sleep()
|
663 |
-
msg_dereverb = "Vocal Clarity Enhancement through De-Reverberation..."
|
664 |
-
logger.info(msg_dereverb)
|
665 |
-
gr.Info(msg_dereverb)
|
666 |
-
try:
|
667 |
-
_, vocals_dereverb_path = run_mdx(
|
668 |
-
mdx_model_params,
|
669 |
-
song_output_dir,
|
670 |
-
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"),
|
671 |
-
main_vocals_path,
|
672 |
-
invert_suffix="DeReverb",
|
673 |
-
exclude_main=True,
|
674 |
-
denoise=True,
|
675 |
-
device_base=device_base,
|
676 |
-
)
|
677 |
-
except Exception as e:
|
678 |
-
_, vocals_dereverb_path = run_mdx_beta(
|
679 |
-
mdx_model_params,
|
680 |
-
song_output_dir,
|
681 |
-
os.path.join(mdxnet_models_dir, "Reverb_HQ_By_FoxJoy.onnx"),
|
682 |
-
main_vocals_path,
|
683 |
-
invert_suffix="DeReverb",
|
684 |
-
exclude_main=True,
|
685 |
-
denoise=True,
|
686 |
-
device_base=device_base,
|
687 |
-
)
|
688 |
-
else:
|
689 |
-
vocals_dereverb_path = main_vocals_path
|
690 |
-
|
691 |
-
return (
|
692 |
-
vocals_path,
|
693 |
-
instrumentals_path,
|
694 |
-
backup_vocals_path,
|
695 |
-
main_vocals_path,
|
696 |
-
vocals_dereverb_path,
|
697 |
-
)
|
698 |
-
|
699 |
-
|
700 |
-
def add_vocal_effects(input_file, output_file, reverb_room_size=0.6, vocal_reverb_dryness=0.8, reverb_damping=0.6, reverb_wet_level=0.35,
|
701 |
-
delay_seconds=0.4, delay_mix=0.25,
|
702 |
-
compressor_threshold_db=-25, compressor_ratio=3.5, compressor_attack_ms=10, compressor_release_ms=60,
|
703 |
-
gain_db=3):
|
704 |
-
|
705 |
-
effects = [HighpassFilter()]
|
706 |
-
|
707 |
-
effects.append(Reverb(room_size=reverb_room_size, damping=reverb_damping, wet_level=reverb_wet_level, dry_level=vocal_reverb_dryness))
|
708 |
-
|
709 |
-
effects.append(Compressor(threshold_db=compressor_threshold_db, ratio=compressor_ratio,
|
710 |
-
attack_ms=compressor_attack_ms, release_ms=compressor_release_ms))
|
711 |
-
|
712 |
-
if delay_seconds > 0 or delay_mix > 0:
|
713 |
-
effects.append(Delay(delay_seconds=delay_seconds, mix=delay_mix))
|
714 |
-
print("delay applied")
|
715 |
-
# effects.append(Chorus())
|
716 |
-
|
717 |
-
if gain_db:
|
718 |
-
effects.append(Gain(gain_db=gain_db))
|
719 |
-
print("added gain db")
|
720 |
-
|
721 |
-
board = Pedalboard(effects)
|
722 |
-
|
723 |
-
with AudioFile(input_file) as f:
|
724 |
-
with AudioFile(output_file, 'w', f.samplerate, f.num_channels) as o:
|
725 |
-
# Read one second of audio at a time, until the file is empty:
|
726 |
-
while f.tell() < f.frames:
|
727 |
-
chunk = f.read(int(f.samplerate))
|
728 |
-
effected = board(chunk, f.samplerate, reset=False)
|
729 |
-
o.write(effected)
|
730 |
-
|
731 |
-
|
732 |
-
def add_instrumental_effects(input_file, output_file, highpass_freq=100, lowpass_freq=12000,
|
733 |
-
reverb_room_size=0.5, reverb_damping=0.5, reverb_wet_level=0.25,
|
734 |
-
compressor_threshold_db=-20, compressor_ratio=2.5, compressor_attack_ms=15, compressor_release_ms=80,
|
735 |
-
gain_db=2):
|
736 |
-
|
737 |
-
effects = [
|
738 |
-
HighpassFilter(cutoff_frequency_hz=highpass_freq),
|
739 |
-
LowpassFilter(cutoff_frequency_hz=lowpass_freq),
|
740 |
-
]
|
741 |
-
if reverb_room_size > 0 or reverb_damping > 0 or reverb_wet_level > 0:
|
742 |
-
effects.append(Reverb(room_size=reverb_room_size, damping=reverb_damping, wet_level=reverb_wet_level))
|
743 |
-
|
744 |
-
effects.append(Compressor(threshold_db=compressor_threshold_db, ratio=compressor_ratio,
|
745 |
-
attack_ms=compressor_attack_ms, release_ms=compressor_release_ms))
|
746 |
-
|
747 |
-
if gain_db:
|
748 |
-
effects.append(Gain(gain_db=gain_db))
|
749 |
-
|
750 |
-
board = Pedalboard(effects)
|
751 |
-
|
752 |
-
with AudioFile(input_file) as f:
|
753 |
-
with AudioFile(output_file, 'w', f.samplerate, f.num_channels) as o:
|
754 |
-
# Read one second of audio at a time, until the file is empty:
|
755 |
-
while f.tell() < f.frames:
|
756 |
-
chunk = f.read(int(f.samplerate))
|
757 |
-
effected = board(chunk, f.samplerate, reset=False)
|
758 |
-
o.write(effected)
|
759 |
-
|
760 |
-
|
761 |
-
def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, background_effects=True,
|
762 |
-
vocal_reverb_room_size=0.6, vocal_reverb_damping=0.6, vocal_reverb_wet_level=0.35,
|
763 |
-
vocal_delay_seconds=0.4, vocal_delay_mix=0.25,
|
764 |
-
vocal_compressor_threshold_db=-25, vocal_compressor_ratio=3.5, vocal_compressor_attack_ms=10, vocal_compressor_release_ms=60,
|
765 |
-
vocal_gain_db=4,
|
766 |
-
background_highpass_freq=120, background_lowpass_freq=11000,
|
767 |
-
background_reverb_room_size=0.5, background_reverb_damping=0.5, background_reverb_wet_level=0.25,
|
768 |
-
background_compressor_threshold_db=-20, background_compressor_ratio=2.5, background_compressor_attack_ms=15, background_compressor_release_ms=80,
|
769 |
-
background_gain_db=3):
|
770 |
-
if not media_file:
|
771 |
-
raise ValueError("The audio path is missing.")
|
772 |
-
|
773 |
-
if not stem:
|
774 |
-
raise ValueError("Please select 'vocal' or 'background' stem.")
|
775 |
-
|
776 |
-
hash_audio = str(get_hash(media_file))
|
777 |
-
media_dir = os.path.dirname(media_file)
|
778 |
-
|
779 |
-
outputs = []
|
780 |
-
|
781 |
-
start_time = time.time()
|
782 |
-
|
783 |
-
if stem == "vocal":
|
784 |
-
try:
|
785 |
-
_, _, _, _, vocal_audio = process_uvr_task(
|
786 |
-
orig_song_path=media_file,
|
787 |
-
song_id=hash_audio + "mdx",
|
788 |
-
main_vocals=main,
|
789 |
-
dereverb=dereverb,
|
790 |
-
remove_files_output_dir=False,
|
791 |
-
)
|
792 |
-
|
793 |
-
if vocal_effects:
|
794 |
-
suffix = '_effects'
|
795 |
-
file_name, file_extension = os.path.splitext(vocal_audio)
|
796 |
-
out_effects = file_name + suffix + file_extension
|
797 |
-
out_effects_path = os.path.join(media_dir, out_effects)
|
798 |
-
add_vocal_effects(vocal_audio, out_effects_path,
|
799 |
-
reverb_room_size=vocal_reverb_room_size, reverb_damping=vocal_reverb_damping, reverb_wet_level=vocal_reverb_wet_level,
|
800 |
-
delay_seconds=vocal_delay_seconds, delay_mix=vocal_delay_mix,
|
801 |
-
compressor_threshold_db=vocal_compressor_threshold_db, compressor_ratio=vocal_compressor_ratio, compressor_attack_ms=vocal_compressor_attack_ms, compressor_release_ms=vocal_compressor_release_ms,
|
802 |
-
gain_db=vocal_gain_db
|
803 |
-
)
|
804 |
-
vocal_audio = out_effects_path
|
805 |
-
|
806 |
-
outputs.append(vocal_audio)
|
807 |
-
except Exception as error:
|
808 |
-
logger.error(str(error))
|
809 |
-
traceback.print_exc()
|
810 |
-
|
811 |
-
if stem == "background":
|
812 |
-
background_audio, _ = process_uvr_task(
|
813 |
-
orig_song_path=media_file,
|
814 |
-
song_id=hash_audio + "voiceless",
|
815 |
-
only_voiceless=True,
|
816 |
-
remove_files_output_dir=False,
|
817 |
-
)
|
818 |
-
|
819 |
-
if background_effects:
|
820 |
-
suffix = '_effects'
|
821 |
-
file_name, file_extension = os.path.splitext(background_audio)
|
822 |
-
out_effects = file_name + suffix + file_extension
|
823 |
-
out_effects_path = os.path.join(media_dir, out_effects)
|
824 |
-
add_instrumental_effects(background_audio, out_effects_path,
|
825 |
-
highpass_freq=background_highpass_freq, lowpass_freq=background_lowpass_freq,
|
826 |
-
reverb_room_size=background_reverb_room_size, reverb_damping=background_reverb_damping, reverb_wet_level=background_reverb_wet_level,
|
827 |
-
compressor_threshold_db=background_compressor_threshold_db, compressor_ratio=background_compressor_ratio, compressor_attack_ms=background_compressor_attack_ms, compressor_release_ms=background_compressor_release_ms,
|
828 |
-
gain_db=background_gain_db
|
829 |
-
)
|
830 |
-
background_audio = out_effects_path
|
831 |
-
|
832 |
-
outputs.append(background_audio)
|
833 |
-
|
834 |
-
end_time = time.time()
|
835 |
-
execution_time = end_time - start_time
|
836 |
-
logger.info(f"Execution time: {execution_time} seconds")
|
837 |
-
|
838 |
-
if not outputs:
|
839 |
-
raise Exception("Error in sound separation.")
|
840 |
-
|
841 |
-
return outputs
|
842 |
-
|
843 |
-
|
844 |
-
def sound_separate(media_file, stem, main, dereverb, vocal_effects=True, background_effects=True,
|
845 |
-
vocal_reverb_room_size=0.6, vocal_reverb_damping=0.6, vocal_reverb_dryness=0.8 ,vocal_reverb_wet_level=0.35,
|
846 |
-
vocal_delay_seconds=0.4, vocal_delay_mix=0.25,
|
847 |
-
vocal_compressor_threshold_db=-25, vocal_compressor_ratio=3.5, vocal_compressor_attack_ms=10, vocal_compressor_release_ms=60,
|
848 |
-
vocal_gain_db=4,
|
849 |
-
background_highpass_freq=120, background_lowpass_freq=11000,
|
850 |
-
background_reverb_room_size=0.5, background_reverb_damping=0.5, background_reverb_wet_level=0.25,
|
851 |
-
background_compressor_threshold_db=-20, background_compressor_ratio=2.5, background_compressor_attack_ms=15, background_compressor_release_ms=80,
|
852 |
-
background_gain_db=3,
|
853 |
-
):
|
854 |
-
if not media_file:
|
855 |
-
raise ValueError("The audio path is missing.")
|
856 |
-
|
857 |
-
if not stem:
|
858 |
-
raise ValueError("Please select 'vocal' or 'background' stem.")
|
859 |
-
|
860 |
-
hash_audio = str(get_hash(media_file))
|
861 |
-
media_dir = os.path.dirname(media_file)
|
862 |
-
|
863 |
-
outputs = []
|
864 |
|
|
|
865 |
try:
|
866 |
-
|
867 |
-
|
868 |
-
except Exception as e:
|
869 |
-
print(e)
|
870 |
-
|
871 |
-
start_time = time.time()
|
872 |
|
873 |
-
|
874 |
-
|
875 |
-
_, _, _, _, vocal_audio = process_uvr_task(
|
876 |
-
orig_song_path=media_file,
|
877 |
-
song_id=hash_audio + "mdx",
|
878 |
-
main_vocals=main,
|
879 |
-
dereverb=dereverb,
|
880 |
-
remove_files_output_dir=False,
|
881 |
-
)
|
882 |
-
|
883 |
-
if vocal_effects:
|
884 |
-
suffix = '_effects'
|
885 |
-
file_name, file_extension = os.path.splitext(os.path.abspath(vocal_audio))
|
886 |
-
out_effects = file_name + suffix + file_extension
|
887 |
-
out_effects_path = os.path.join(media_dir, out_effects)
|
888 |
-
add_vocal_effects(vocal_audio, out_effects_path,
|
889 |
-
reverb_room_size=vocal_reverb_room_size, reverb_damping=vocal_reverb_damping, vocal_reverb_dryness=vocal_reverb_dryness, reverb_wet_level=vocal_reverb_wet_level,
|
890 |
-
delay_seconds=vocal_delay_seconds, delay_mix=vocal_delay_mix,
|
891 |
-
compressor_threshold_db=vocal_compressor_threshold_db, compressor_ratio=vocal_compressor_ratio, compressor_attack_ms=vocal_compressor_attack_ms, compressor_release_ms=vocal_compressor_release_ms,
|
892 |
-
gain_db=vocal_gain_db
|
893 |
-
)
|
894 |
-
vocal_audio = out_effects_path
|
895 |
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
background_audio, _ = process_uvr_task(
|
903 |
-
orig_song_path=media_file,
|
904 |
-
song_id=hash_audio + "voiceless",
|
905 |
-
only_voiceless=True,
|
906 |
-
remove_files_output_dir=False,
|
907 |
)
|
908 |
|
909 |
-
|
910 |
-
suffix = '_effects'
|
911 |
-
file_name, file_extension = os.path.splitext(os.path.abspath(background_audio))
|
912 |
-
out_effects = file_name + suffix + file_extension
|
913 |
-
out_effects_path = os.path.join(media_dir, out_effects)
|
914 |
-
print(file_name, file_extension, out_effects, out_effects_path)
|
915 |
-
add_instrumental_effects(background_audio, out_effects_path,
|
916 |
-
highpass_freq=background_highpass_freq, lowpass_freq=background_lowpass_freq,
|
917 |
-
reverb_room_size=background_reverb_room_size, reverb_damping=background_reverb_damping, reverb_wet_level=background_reverb_wet_level,
|
918 |
-
compressor_threshold_db=background_compressor_threshold_db, compressor_ratio=background_compressor_ratio, compressor_attack_ms=background_compressor_attack_ms, compressor_release_ms=background_compressor_release_ms,
|
919 |
-
gain_db=background_gain_db
|
920 |
-
)
|
921 |
-
background_audio = out_effects_path
|
922 |
-
|
923 |
-
outputs.append(background_audio)
|
924 |
-
|
925 |
-
end_time = time.time()
|
926 |
-
execution_time = end_time - start_time
|
927 |
-
logger.info(f"Execution time: {execution_time} seconds")
|
928 |
-
|
929 |
-
if not outputs:
|
930 |
-
raise Exception("Error in sound separation.")
|
931 |
-
|
932 |
-
return outputs
|
933 |
-
|
934 |
-
|
935 |
-
def audio_downloader(
|
936 |
-
url_media,
|
937 |
-
):
|
938 |
-
|
939 |
-
url_media = url_media.strip()
|
940 |
-
|
941 |
-
if not url_media:
|
942 |
-
return None
|
943 |
-
|
944 |
-
print(url_media[:10])
|
945 |
-
|
946 |
-
dir_output_downloads = "downloads"
|
947 |
-
os.makedirs(dir_output_downloads, exist_ok=True)
|
948 |
-
|
949 |
-
media_info = yt_dlp.YoutubeDL(
|
950 |
-
{"quiet": True, "no_warnings": True, "noplaylist": True}
|
951 |
-
).extract_info(url_media, download=False)
|
952 |
-
download_path = f"{os.path.join(dir_output_downloads, media_info['title'])}.m4a"
|
953 |
-
|
954 |
-
ydl_opts = {
|
955 |
-
'format': 'm4a/bestaudio/best',
|
956 |
-
'postprocessors': [{ # Extract audio using ffmpeg
|
957 |
-
'key': 'FFmpegExtractAudio',
|
958 |
-
'preferredcodec': 'm4a',
|
959 |
-
}],
|
960 |
-
'force_overwrites': True,
|
961 |
-
'noplaylist': True,
|
962 |
-
'no_warnings': True,
|
963 |
-
'quiet': True,
|
964 |
-
'ignore_no_formats_error': True,
|
965 |
-
'restrictfilenames': True,
|
966 |
-
'outtmpl': download_path,
|
967 |
-
}
|
968 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl_download:
|
969 |
-
ydl_download.download([url_media])
|
970 |
-
|
971 |
-
return download_path
|
972 |
-
|
973 |
-
|
974 |
-
def downloader_conf():
|
975 |
-
return gr.Checkbox(
|
976 |
-
False,
|
977 |
-
label="URL-to-Audio",
|
978 |
-
# info="",
|
979 |
-
container=False,
|
980 |
-
)
|
981 |
-
|
982 |
-
|
983 |
-
def url_media_conf():
|
984 |
-
return gr.Textbox(
|
985 |
-
value="",
|
986 |
-
label="Enter URL",
|
987 |
-
placeholder="www.youtube.com/watch?v=g_9rPvbENUw",
|
988 |
-
visible=False,
|
989 |
-
lines=1,
|
990 |
-
)
|
991 |
-
|
992 |
-
|
993 |
-
def url_button_conf():
|
994 |
-
return gr.Button(
|
995 |
-
"Go",
|
996 |
-
variant="secondary",
|
997 |
-
visible=False,
|
998 |
-
)
|
999 |
-
|
1000 |
-
|
1001 |
-
def show_components_downloader(value_active):
|
1002 |
-
return gr.update(
|
1003 |
-
visible=value_active
|
1004 |
-
), gr.update(
|
1005 |
-
visible=value_active
|
1006 |
-
)
|
1007 |
-
|
1008 |
-
|
1009 |
-
def audio_conf():
|
1010 |
-
return gr.File(
|
1011 |
-
label="Audio file",
|
1012 |
-
# file_count="multiple",
|
1013 |
-
type="filepath",
|
1014 |
-
container=True,
|
1015 |
-
)
|
1016 |
-
|
1017 |
-
|
1018 |
-
def stem_conf():
|
1019 |
-
return gr.Radio(
|
1020 |
-
choices=["vocal", "background"],
|
1021 |
-
value="vocal",
|
1022 |
-
label="Stem",
|
1023 |
-
# info="",
|
1024 |
-
)
|
1025 |
-
|
1026 |
-
|
1027 |
-
def main_conf():
|
1028 |
-
return gr.Checkbox(
|
1029 |
-
False,
|
1030 |
-
label="Main",
|
1031 |
-
# info="",
|
1032 |
-
)
|
1033 |
-
|
1034 |
-
|
1035 |
-
def dereverb_conf():
|
1036 |
-
return gr.Checkbox(
|
1037 |
-
False,
|
1038 |
-
label="Dereverb",
|
1039 |
-
# info="",
|
1040 |
-
visible=True,
|
1041 |
-
)
|
1042 |
-
|
1043 |
-
|
1044 |
-
def vocal_effects_conf():
|
1045 |
-
return gr.Checkbox(
|
1046 |
-
False,
|
1047 |
-
label="Vocal Effects",
|
1048 |
-
# info="",
|
1049 |
-
visible=True,
|
1050 |
-
)
|
1051 |
-
|
1052 |
-
|
1053 |
-
def background_effects_conf():
|
1054 |
-
return gr.Checkbox(
|
1055 |
-
False,
|
1056 |
-
label="Background Effects",
|
1057 |
-
# info="",
|
1058 |
-
visible=False,
|
1059 |
-
)
|
1060 |
-
|
1061 |
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
label="Vocal Reverb Room Size",
|
1066 |
-
minimum=0.0,
|
1067 |
-
maximum=1.0,
|
1068 |
-
step=0.05,
|
1069 |
-
visible=True,
|
1070 |
-
)
|
1071 |
|
|
|
|
|
1072 |
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
maximum=1.0,
|
1079 |
-
step=0.01,
|
1080 |
-
visible=True,
|
1081 |
-
)
|
1082 |
|
|
|
|
|
1083 |
|
1084 |
-
|
1085 |
-
return gr.Number(
|
1086 |
-
0.2,
|
1087 |
-
label="Vocal Reverb Wet Level",
|
1088 |
-
minimum=0.0,
|
1089 |
-
maximum=1.0,
|
1090 |
-
step=0.05,
|
1091 |
-
visible=True,
|
1092 |
-
)
|
1093 |
|
1094 |
-
|
1095 |
-
|
1096 |
-
|
1097 |
-
0.8,
|
1098 |
-
label="Vocal Reverb Dryness Level",
|
1099 |
-
minimum=0.0,
|
1100 |
-
maximum=1.0,
|
1101 |
-
step=0.05,
|
1102 |
-
visible=True,
|
1103 |
-
)
|
1104 |
-
|
1105 |
-
|
1106 |
-
def vocal_delay_seconds_conf():
|
1107 |
-
return gr.Number(
|
1108 |
-
0.,
|
1109 |
-
label="Vocal Delay Seconds",
|
1110 |
-
minimum=0.0,
|
1111 |
-
maximum=1.0,
|
1112 |
-
step=0.01,
|
1113 |
-
visible=True,
|
1114 |
-
)
|
1115 |
-
|
1116 |
-
|
1117 |
-
def vocal_delay_mix_conf():
|
1118 |
-
return gr.Number(
|
1119 |
-
0.,
|
1120 |
-
label="Vocal Delay Mix",
|
1121 |
-
minimum=0.0,
|
1122 |
-
maximum=1.0,
|
1123 |
-
step=0.01,
|
1124 |
-
visible=True,
|
1125 |
-
)
|
1126 |
-
|
1127 |
-
|
1128 |
-
def vocal_compressor_threshold_db_conf():
|
1129 |
-
return gr.Number(
|
1130 |
-
-15,
|
1131 |
-
label="Vocal Compressor Threshold (dB)",
|
1132 |
-
minimum=-60,
|
1133 |
-
maximum=0,
|
1134 |
-
step=1,
|
1135 |
-
visible=True,
|
1136 |
-
)
|
1137 |
-
|
1138 |
-
|
1139 |
-
def vocal_compressor_ratio_conf():
|
1140 |
-
return gr.Number(
|
1141 |
-
4.,
|
1142 |
-
label="Vocal Compressor Ratio",
|
1143 |
-
minimum=0,
|
1144 |
-
maximum=20,
|
1145 |
-
step=0.1,
|
1146 |
-
visible=True,
|
1147 |
-
)
|
1148 |
-
|
1149 |
-
|
1150 |
-
def vocal_compressor_attack_ms_conf():
|
1151 |
-
return gr.Number(
|
1152 |
-
1.0,
|
1153 |
-
label="Vocal Compressor Attack (ms)",
|
1154 |
-
minimum=0,
|
1155 |
-
maximum=1000,
|
1156 |
-
step=1,
|
1157 |
-
visible=True,
|
1158 |
-
)
|
1159 |
-
|
1160 |
-
|
1161 |
-
def vocal_compressor_release_ms_conf():
|
1162 |
-
return gr.Number(
|
1163 |
-
100,
|
1164 |
-
label="Vocal Compressor Release (ms)",
|
1165 |
-
minimum=0,
|
1166 |
-
maximum=3000,
|
1167 |
-
step=1,
|
1168 |
-
visible=True,
|
1169 |
-
)
|
1170 |
-
|
1171 |
-
|
1172 |
-
def vocal_gain_db_conf():
|
1173 |
-
return gr.Number(
|
1174 |
-
0,
|
1175 |
-
label="Vocal Gain (dB)",
|
1176 |
-
minimum=-40,
|
1177 |
-
maximum=40,
|
1178 |
-
step=1,
|
1179 |
-
visible=True,
|
1180 |
-
)
|
1181 |
-
|
1182 |
-
|
1183 |
-
def background_highpass_freq_conf():
|
1184 |
-
return gr.Number(
|
1185 |
-
120,
|
1186 |
-
label="Background Highpass Frequency (Hz)",
|
1187 |
-
minimum=0,
|
1188 |
-
maximum=1000,
|
1189 |
-
step=1,
|
1190 |
-
visible=True,
|
1191 |
-
)
|
1192 |
-
|
1193 |
-
|
1194 |
-
def background_lowpass_freq_conf():
|
1195 |
-
return gr.Number(
|
1196 |
-
11000,
|
1197 |
-
label="Background Lowpass Frequency (Hz)",
|
1198 |
-
minimum=0,
|
1199 |
-
maximum=20000,
|
1200 |
-
step=1,
|
1201 |
-
visible=True,
|
1202 |
-
)
|
1203 |
-
|
1204 |
-
|
1205 |
-
def background_reverb_room_size_conf():
|
1206 |
-
return gr.Number(
|
1207 |
-
0.1,
|
1208 |
-
label="Background Reverb Room Size",
|
1209 |
-
minimum=0.0,
|
1210 |
-
maximum=1.0,
|
1211 |
-
step=0.1,
|
1212 |
-
visible=True,
|
1213 |
-
)
|
1214 |
-
|
1215 |
-
|
1216 |
-
def background_reverb_damping_conf():
|
1217 |
-
return gr.Number(
|
1218 |
-
0.5,
|
1219 |
-
label="Background Reverb Damping",
|
1220 |
-
minimum=0.0,
|
1221 |
-
maximum=1.0,
|
1222 |
-
step=0.1,
|
1223 |
-
visible=True,
|
1224 |
-
)
|
1225 |
-
|
1226 |
-
|
1227 |
-
def background_reverb_wet_level_conf():
|
1228 |
-
return gr.Number(
|
1229 |
-
0.25,
|
1230 |
-
label="Background Reverb Wet Level",
|
1231 |
-
minimum=0.0,
|
1232 |
-
maximum=1.0,
|
1233 |
-
step=0.05,
|
1234 |
-
visible=True,
|
1235 |
-
)
|
1236 |
-
|
1237 |
-
|
1238 |
-
def background_compressor_threshold_db_conf():
|
1239 |
-
return gr.Number(
|
1240 |
-
-15,
|
1241 |
-
label="Background Compressor Threshold (dB)",
|
1242 |
-
minimum=-60,
|
1243 |
-
maximum=0,
|
1244 |
-
step=1,
|
1245 |
-
visible=True,
|
1246 |
-
)
|
1247 |
-
|
1248 |
-
|
1249 |
-
def background_compressor_ratio_conf():
|
1250 |
-
return gr.Number(
|
1251 |
-
4.,
|
1252 |
-
label="Background Compressor Ratio",
|
1253 |
-
minimum=0,
|
1254 |
-
maximum=20,
|
1255 |
-
step=0.1,
|
1256 |
-
visible=True,
|
1257 |
-
)
|
1258 |
-
|
1259 |
-
|
1260 |
-
def background_compressor_attack_ms_conf():
|
1261 |
-
return gr.Number(
|
1262 |
-
15,
|
1263 |
-
label="Background Compressor Attack (ms)",
|
1264 |
-
minimum=0,
|
1265 |
-
maximum=1000,
|
1266 |
-
step=1,
|
1267 |
-
visible=True,
|
1268 |
-
)
|
1269 |
-
|
1270 |
-
|
1271 |
-
def background_compressor_release_ms_conf():
|
1272 |
-
return gr.Number(
|
1273 |
-
60,
|
1274 |
-
label="Background Compressor Release (ms)",
|
1275 |
-
minimum=0,
|
1276 |
-
maximum=3000,
|
1277 |
-
step=1,
|
1278 |
-
visible=True,
|
1279 |
-
)
|
1280 |
-
|
1281 |
-
|
1282 |
-
def background_gain_db_conf():
|
1283 |
-
return gr.Number(
|
1284 |
-
0,
|
1285 |
-
label="Background Gain (dB)",
|
1286 |
-
minimum=-40,
|
1287 |
-
maximum=40,
|
1288 |
-
step=1,
|
1289 |
-
visible=True,
|
1290 |
-
)
|
1291 |
-
|
1292 |
-
|
1293 |
-
def button_conf():
|
1294 |
-
return gr.Button(
|
1295 |
-
"Inference",
|
1296 |
-
variant="primary",
|
1297 |
-
)
|
1298 |
-
|
1299 |
-
|
1300 |
-
def output_conf():
|
1301 |
-
return gr.File(
|
1302 |
-
label="Result",
|
1303 |
-
file_count="multiple",
|
1304 |
-
interactive=False,
|
1305 |
-
)
|
1306 |
-
|
1307 |
-
|
1308 |
-
def show_vocal_components(value_name):
|
1309 |
-
|
1310 |
-
if value_name == "vocal":
|
1311 |
-
return gr.update(visible=True), gr.update(
|
1312 |
-
visible=True
|
1313 |
-
), gr.update(visible=True), gr.update(
|
1314 |
-
visible=False
|
1315 |
-
)
|
1316 |
-
else:
|
1317 |
-
return gr.update(visible=False), gr.update(
|
1318 |
-
visible=False
|
1319 |
-
), gr.update(visible=False), gr.update(
|
1320 |
-
visible=True
|
1321 |
-
)
|
1322 |
|
1323 |
|
1324 |
-
def
|
1325 |
-
with gr.Blocks(
|
1326 |
-
gr.Markdown(
|
1327 |
-
gr.Markdown(description)
|
1328 |
|
1329 |
-
downloader_gui = downloader_conf()
|
1330 |
with gr.Row():
|
1331 |
-
|
1332 |
-
url_media_gui = url_media_conf()
|
1333 |
-
with gr.Column(scale=1):
|
1334 |
-
url_button_gui = url_button_conf()
|
1335 |
|
1336 |
-
|
1337 |
-
|
1338 |
-
|
1339 |
-
|
1340 |
-
|
1341 |
-
|
1342 |
-
aud = audio_conf()
|
1343 |
-
|
1344 |
-
url_button_gui.click(
|
1345 |
-
audio_downloader,
|
1346 |
-
[url_media_gui],
|
1347 |
-
[aud]
|
1348 |
-
)
|
1349 |
-
|
1350 |
-
with gr.Column():
|
1351 |
-
with gr.Row():
|
1352 |
-
stem_gui = stem_conf()
|
1353 |
|
1354 |
-
with gr.
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
|
1361 |
-
|
1362 |
-
|
1363 |
-
# gr.Label("Vocal Effects Parameters")
|
1364 |
-
with gr.Row():
|
1365 |
-
vocal_reverb_room_size_gui = vocal_reverb_room_size_conf()
|
1366 |
-
vocal_reverb_damping_gui = vocal_reverb_damping_conf()
|
1367 |
-
vocal_reverb_dryness_gui = vocal_reverb_dryness_level_conf()
|
1368 |
-
vocal_reverb_wet_level_gui = vocal_reverb_wet_level_conf()
|
1369 |
-
vocal_delay_seconds_gui = vocal_delay_seconds_conf()
|
1370 |
-
vocal_delay_mix_gui = vocal_delay_mix_conf()
|
1371 |
-
vocal_compressor_threshold_db_gui = vocal_compressor_threshold_db_conf()
|
1372 |
-
vocal_compressor_ratio_gui = vocal_compressor_ratio_conf()
|
1373 |
-
vocal_compressor_attack_ms_gui = vocal_compressor_attack_ms_conf()
|
1374 |
-
vocal_compressor_release_ms_gui = vocal_compressor_release_ms_conf()
|
1375 |
-
vocal_gain_db_gui = vocal_gain_db_conf()
|
1376 |
|
1377 |
-
|
1378 |
-
# gr.Label("Background Effects Parameters")
|
1379 |
-
with gr.Row():
|
1380 |
-
background_highpass_freq_gui = background_highpass_freq_conf()
|
1381 |
-
background_lowpass_freq_gui = background_lowpass_freq_conf()
|
1382 |
-
background_reverb_room_size_gui = background_reverb_room_size_conf()
|
1383 |
-
background_reverb_damping_gui = background_reverb_damping_conf()
|
1384 |
-
background_reverb_wet_level_gui = background_reverb_wet_level_conf()
|
1385 |
-
background_compressor_threshold_db_gui = background_compressor_threshold_db_conf()
|
1386 |
-
background_compressor_ratio_gui = background_compressor_ratio_conf()
|
1387 |
-
background_compressor_attack_ms_gui = background_compressor_attack_ms_conf()
|
1388 |
-
background_compressor_release_ms_gui = background_compressor_release_ms_conf()
|
1389 |
-
background_gain_db_gui = background_gain_db_conf()
|
1390 |
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
|
|
|
|
1396 |
|
1397 |
-
|
1398 |
-
|
1399 |
|
1400 |
-
|
1401 |
-
sound_separate,
|
1402 |
-
inputs=[
|
1403 |
-
aud,
|
1404 |
-
stem_gui,
|
1405 |
-
main_gui,
|
1406 |
-
dereverb_gui,
|
1407 |
-
vocal_effects_gui,
|
1408 |
-
background_effects_gui,
|
1409 |
-
vocal_reverb_room_size_gui, vocal_reverb_damping_gui, vocal_reverb_dryness_gui, vocal_reverb_wet_level_gui,
|
1410 |
-
vocal_delay_seconds_gui, vocal_delay_mix_gui, vocal_compressor_threshold_db_gui, vocal_compressor_ratio_gui,
|
1411 |
-
vocal_compressor_attack_ms_gui, vocal_compressor_release_ms_gui, vocal_gain_db_gui,
|
1412 |
-
background_highpass_freq_gui, background_lowpass_freq_gui, background_reverb_room_size_gui,
|
1413 |
-
background_reverb_damping_gui, background_reverb_wet_level_gui, background_compressor_threshold_db_gui,
|
1414 |
-
background_compressor_ratio_gui, background_compressor_attack_ms_gui, background_compressor_release_ms_gui,
|
1415 |
-
background_gain_db_gui,
|
1416 |
-
],
|
1417 |
-
outputs=[output_base],
|
1418 |
-
)
|
1419 |
|
1420 |
-
|
1421 |
-
|
1422 |
-
|
1423 |
-
|
1424 |
-
"vocal",
|
1425 |
-
False,
|
1426 |
-
False,
|
1427 |
-
False,
|
1428 |
-
False,
|
1429 |
-
0.15, 0.7, 0.8, 0.2,
|
1430 |
-
0., 0., -15, 4., 1, 100, 0,
|
1431 |
-
120, 11000, 0.5, 0.1, 0.25, -15, 4., 15, 60, 0,
|
1432 |
-
],
|
1433 |
-
],
|
1434 |
-
fn=sound_separate,
|
1435 |
-
inputs=[
|
1436 |
-
aud,
|
1437 |
-
stem_gui,
|
1438 |
-
main_gui,
|
1439 |
-
dereverb_gui,
|
1440 |
-
vocal_effects_gui,
|
1441 |
-
background_effects_gui,
|
1442 |
-
vocal_reverb_room_size_gui, vocal_reverb_damping_gui, vocal_reverb_dryness_gui, vocal_reverb_wet_level_gui,
|
1443 |
-
vocal_delay_seconds_gui, vocal_delay_mix_gui, vocal_compressor_threshold_db_gui, vocal_compressor_ratio_gui,
|
1444 |
-
vocal_compressor_attack_ms_gui, vocal_compressor_release_ms_gui, vocal_gain_db_gui,
|
1445 |
-
background_highpass_freq_gui, background_lowpass_freq_gui, background_reverb_room_size_gui,
|
1446 |
-
background_reverb_damping_gui, background_reverb_wet_level_gui, background_compressor_threshold_db_gui,
|
1447 |
-
background_compressor_ratio_gui, background_compressor_attack_ms_gui, background_compressor_release_ms_gui,
|
1448 |
-
background_gain_db_gui,
|
1449 |
-
],
|
1450 |
-
outputs=[output_base],
|
1451 |
-
cache_examples=False,
|
1452 |
)
|
1453 |
|
1454 |
-
return
|
1455 |
|
1456 |
|
1457 |
-
|
1458 |
-
|
1459 |
-
|
1460 |
-
download_manager(
|
1461 |
-
os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir
|
1462 |
-
)
|
1463 |
-
|
1464 |
-
app = get_gui(theme)
|
1465 |
|
1466 |
-
app.queue(default_concurrency_limit=40)
|
1467 |
|
1468 |
-
|
1469 |
-
|
1470 |
-
share=False,
|
1471 |
-
show_error=True,
|
1472 |
-
quiet=False,
|
1473 |
-
debug=False,
|
1474 |
-
)
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
import logging
|
6 |
+
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger("demucs")
|
10 |
|
11 |
+
DEFAULT_MODEL = "htdemucs"
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def run_demucs(audio_path, selected_stems, model_name=DEFAULT_MODEL):
|
15 |
try:
|
16 |
+
logger.info(f"Running Demucs on {audio_path}")
|
17 |
+
output_dir = tempfile.mkdtemp()
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
cmd = f"python -m demucs -n {model_name} -o {output_dir} \"{audio_path}\""
|
20 |
+
logger.info(f"Executing command: {cmd}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
process = subprocess.Popen(
|
23 |
+
cmd,
|
24 |
+
shell=True,
|
25 |
+
stdout=subprocess.PIPE,
|
26 |
+
stderr=subprocess.PIPE,
|
27 |
+
text=True
|
|
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
|
30 |
+
stdout, stderr = process.communicate()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
if process.returncode != 0:
|
33 |
+
logger.error(f"Demucs error: {stderr}")
|
34 |
+
raise gr.Error(f"Demucs failed: {stderr}")
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
track_name = Path(audio_path).stem
|
37 |
+
stem_dir = Path(output_dir) / model_name / track_name
|
38 |
|
39 |
+
output_files = []
|
40 |
+
for stem in selected_stems:
|
41 |
+
stem_path = stem_dir / f"{stem}.wav"
|
42 |
+
if stem_path.exists():
|
43 |
+
output_files.append(str(stem_path))
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
if not output_files:
|
46 |
+
raise gr.Error("No stems were generated")
|
47 |
|
48 |
+
return output_files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
except Exception as e:
|
51 |
+
logger.error(f"Error: {str(e)}")
|
52 |
+
raise gr.Error(f"Process failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
|
55 |
+
def create_interface():
|
56 |
+
with gr.Blocks() as interface:
|
57 |
+
gr.Markdown("# 🎚️ Demucs Stem Splitter")
|
|
|
58 |
|
|
|
59 |
with gr.Row():
|
60 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
|
|
|
|
|
|
61 |
|
62 |
+
with gr.Row():
|
63 |
+
vocals = gr.Checkbox(label="Vocals", value=True)
|
64 |
+
drums = gr.Checkbox(label="Drums", value=True)
|
65 |
+
bass = gr.Checkbox(label="Bass", value=True)
|
66 |
+
other = gr.Checkbox(label="Other", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
with gr.Row():
|
69 |
+
model_selector = gr.Dropdown(
|
70 |
+
label="Model",
|
71 |
+
choices=["htdemucs", "mdx_extra", "mdx_extra_q"],
|
72 |
+
value="htdemucs"
|
73 |
+
)
|
74 |
|
75 |
+
with gr.Row():
|
76 |
+
submit_btn = gr.Button("Split Stems")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
output = gr.File(label="Output Stems", file_count="multiple")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
def process(audio_file, vocals_enabled, drums_enabled, bass_enabled, other_enabled, model):
|
81 |
+
selected = [stem for stem, enabled in [
|
82 |
+
("vocals", vocals_enabled),
|
83 |
+
("drums", drums_enabled),
|
84 |
+
("bass", bass_enabled),
|
85 |
+
("other", other_enabled),
|
86 |
+
] if enabled]
|
87 |
|
88 |
+
if not selected:
|
89 |
+
raise gr.Error("Please select at least one stem")
|
90 |
|
91 |
+
return run_demucs(audio_file, selected, model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
submit_btn.click(
|
94 |
+
fn=process,
|
95 |
+
inputs=[audio_input, vocals, drums, bass, other, model_selector],
|
96 |
+
outputs=output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
)
|
98 |
|
99 |
+
return interface
|
100 |
|
101 |
|
102 |
+
def main():
|
103 |
+
interface = create_interface()
|
104 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
105 |
|
|
|
106 |
|
107 |
+
if __name__ == '__main__':
|
108 |
+
main()
|
|
|
|
|
|
|
|
|
|