Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +185 -0
inference.py
CHANGED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# inference.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import gc
|
5 |
+
import json
|
6 |
+
import shlex
|
7 |
+
import sys
|
8 |
+
import torch
|
9 |
+
import librosa
|
10 |
+
import numpy as np
|
11 |
+
import subprocess
|
12 |
+
import soundfile as sf
|
13 |
+
import hashlib
|
14 |
+
import random
|
15 |
+
import time
|
16 |
+
import traceback
|
17 |
+
import onnxruntime as ort
|
18 |
+
from utils import logger, remove_directory_contents, create_directories
|
19 |
+
from mdx_core import MDX, MDXModel
|
20 |
+
from effects import add_vocal_effects, add_instrumental_effects
|
21 |
+
|
22 |
+
|
23 |
+
stem_naming = {
|
24 |
+
"Vocals": "Instrumental",
|
25 |
+
"Other": "Instruments",
|
26 |
+
"Instrumental": "Vocals",
|
27 |
+
"Drums": "Drumless",
|
28 |
+
"Bass": "Bassless",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False,
|
33 |
+
suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2, device_base="cuda"):
|
34 |
+
|
35 |
+
device = torch.device("cuda:0" if device_base == "cuda" else "cpu")
|
36 |
+
processor_num = 0 if device_base == "cuda" else -1
|
37 |
+
|
38 |
+
if device_base == "cuda":
|
39 |
+
vram_gb = torch.cuda.get_device_properties(device).total_memory / 1024**3
|
40 |
+
m_threads = 1 if vram_gb < 8 else (8 if vram_gb > 32 else 2)
|
41 |
+
logger.info(f"threads: {m_threads} vram: {vram_gb}")
|
42 |
+
else:
|
43 |
+
m_threads = 1
|
44 |
+
|
45 |
+
model_hash = MDX.get_hash(model_path)
|
46 |
+
mp = model_params.get(model_hash)
|
47 |
+
|
48 |
+
model = MDXModel(
|
49 |
+
device,
|
50 |
+
dim_f=mp["mdx_dim_f_set"],
|
51 |
+
dim_t=2 ** mp["mdx_dim_t_set"],
|
52 |
+
n_fft=mp["mdx_n_fft_scale_set"],
|
53 |
+
stem_name=mp["primary_stem"],
|
54 |
+
compensation=mp["compensate"],
|
55 |
+
)
|
56 |
+
|
57 |
+
mdx_sess = MDX(model_path, model, processor=processor_num)
|
58 |
+
wave, sr = librosa.load(filename, mono=False, sr=44100)
|
59 |
+
peak = max(np.max(wave), abs(np.min(wave)))
|
60 |
+
wave /= peak
|
61 |
+
|
62 |
+
if denoise:
|
63 |
+
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))
|
64 |
+
wave_processed *= 0.5
|
65 |
+
else:
|
66 |
+
wave_processed = mdx_sess.process_wave(wave, m_threads)
|
67 |
+
|
68 |
+
wave_processed *= peak
|
69 |
+
stem_name = model.stem_name if suffix is None else suffix
|
70 |
+
|
71 |
+
main_filepath = None
|
72 |
+
if not exclude_main:
|
73 |
+
main_filepath = os.path.join(
|
74 |
+
output_dir,
|
75 |
+
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
76 |
+
)
|
77 |
+
sf.write(main_filepath, wave_processed.T, sr)
|
78 |
+
|
79 |
+
invert_filepath = None
|
80 |
+
if not exclude_inversion:
|
81 |
+
diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix
|
82 |
+
stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
|
83 |
+
invert_filepath = os.path.join(
|
84 |
+
output_dir,
|
85 |
+
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
86 |
+
)
|
87 |
+
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
|
88 |
+
|
89 |
+
if not keep_orig:
|
90 |
+
os.remove(filename)
|
91 |
+
|
92 |
+
del mdx_sess, wave_processed, wave
|
93 |
+
gc.collect()
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
return main_filepath, invert_filepath
|
96 |
+
|
97 |
+
|
98 |
+
def run_mdx_beta(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False,
|
99 |
+
suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=1, device_base=""):
|
100 |
+
|
101 |
+
duration = librosa.get_duration(filename=filename)
|
102 |
+
if duration >= 60 and duration <= 120:
|
103 |
+
m_threads = 8
|
104 |
+
elif duration > 120:
|
105 |
+
m_threads = 16
|
106 |
+
|
107 |
+
logger.info(f"threads: {m_threads}")
|
108 |
+
|
109 |
+
device = torch.device("cpu")
|
110 |
+
processor_num = -1
|
111 |
+
|
112 |
+
model_hash = MDX.get_hash(model_path)
|
113 |
+
mp = model_params.get(model_hash)
|
114 |
+
|
115 |
+
model = MDXModel(
|
116 |
+
device,
|
117 |
+
dim_f=mp["mdx_dim_f_set"],
|
118 |
+
dim_t=2 ** mp["mdx_dim_t_set"],
|
119 |
+
n_fft=mp["mdx_n_fft_scale_set"],
|
120 |
+
stem_name=mp["primary_stem"],
|
121 |
+
compensation=mp["compensate"],
|
122 |
+
)
|
123 |
+
|
124 |
+
mdx_sess = MDX(model_path, model, processor=processor_num)
|
125 |
+
wave, sr = librosa.load(filename, mono=False, sr=44100)
|
126 |
+
peak = max(np.max(wave), abs(np.min(wave)))
|
127 |
+
wave /= peak
|
128 |
+
|
129 |
+
if denoise:
|
130 |
+
wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads))
|
131 |
+
wave_processed *= 0.5
|
132 |
+
else:
|
133 |
+
wave_processed = mdx_sess.process_wave(wave, m_threads)
|
134 |
+
|
135 |
+
wave_processed *= peak
|
136 |
+
stem_name = model.stem_name if suffix is None else suffix
|
137 |
+
|
138 |
+
main_filepath = None
|
139 |
+
if not exclude_main:
|
140 |
+
main_filepath = os.path.join(
|
141 |
+
output_dir,
|
142 |
+
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
143 |
+
)
|
144 |
+
sf.write(main_filepath, wave_processed.T, sr)
|
145 |
+
|
146 |
+
invert_filepath = None
|
147 |
+
if not exclude_inversion:
|
148 |
+
diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix
|
149 |
+
stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name
|
150 |
+
invert_filepath = os.path.join(
|
151 |
+
output_dir,
|
152 |
+
f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav",
|
153 |
+
)
|
154 |
+
sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr)
|
155 |
+
|
156 |
+
if not keep_orig:
|
157 |
+
os.remove(filename)
|
158 |
+
|
159 |
+
del mdx_sess, wave_processed, wave
|
160 |
+
gc.collect()
|
161 |
+
torch.cuda.empty_cache()
|
162 |
+
return main_filepath, invert_filepath
|
163 |
+
|
164 |
+
|
165 |
+
def convert_to_stereo_and_wav(audio_path, output_dir):
|
166 |
+
wave, sr = librosa.load(audio_path, mono=False, sr=44100)
|
167 |
+
|
168 |
+
if type(wave[0]) != np.ndarray or audio_path[-4:].lower() != ".wav":
|
169 |
+
stereo_path = os.path.join(output_dir, f"{os.path.splitext(os.path.basename(audio_path))[0]}_stereo.wav")
|
170 |
+
command = shlex.split(f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}")
|
171 |
+
subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
|
172 |
+
return stereo_path
|
173 |
+
return audio_path
|
174 |
+
|
175 |
+
|
176 |
+
def get_hash(filepath):
|
177 |
+
with open(filepath, 'rb') as f:
|
178 |
+
file_hash = hashlib.blake2b()
|
179 |
+
while chunk := f.read(8192):
|
180 |
+
file_hash.update(chunk)
|
181 |
+
return file_hash.hexdigest()[:18]
|
182 |
+
|
183 |
+
|
184 |
+
def random_sleep():
|
185 |
+
time.sleep(round(random.uniform(5.2, 7.9), 1))
|