Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| from glob import glob | |
| from datetime import datetime, timezone | |
| import numpy as np | |
| import pandas as pd | |
| from src.display.formatting import styled_error, styled_message, styled_warning | |
| from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO | |
| from src.submission.check_validity import ( | |
| already_submitted_models, | |
| check_model_card, | |
| get_model_size, | |
| is_model_on_hub, | |
| ) | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS | |
| ) | |
| REQUESTED_MODELS = None | |
| USERS_TO_SUBMISSION_DATES = None | |
| def add_new_eval( | |
| eval_name: str, | |
| upload: object, | |
| precision: str, | |
| hf_model_id: str, | |
| contact_email: str | |
| ): | |
| with open(upload, mode="r") as f: | |
| data = json.load(f) | |
| results = data['results'] | |
| acc_keys = ['exact_match,none', 'exact_match,flexible-extract', 'exact_match,strict-match'] | |
| ret = { | |
| 'eval_name': eval_name, | |
| 'precision': precision, | |
| 'hf_model_id': hf_model_id, | |
| 'contact_email': contact_email | |
| } | |
| for k, v in results.items(): | |
| for acc_k in acc_keys: | |
| if acc_k in v and k in BENCHMARK_COLS: | |
| ret[k] = v[acc_k] | |
| #validation | |
| for k,v in ret.items(): | |
| if k in ['eval_name', 'precision', 'hf_model_id', 'contact_email']: | |
| continue | |
| if k not in BENCHMARK_COLS: | |
| print(f"Missing: {k}") | |
| return styled_error(f'Missing: {k}') | |
| if len(BENCHMARK_COLS) != len(ret) - 4: | |
| print(f"Missing columns") | |
| return styled_error(f'Missing columns') | |
| # TODO add complex validation | |
| #print(results.keys()) | |
| #print(BENCHMARK_COLS) | |
| #for input_col in results.keys(): | |
| # if input_col not in BENCHMARK_COLS: | |
| # print(input_col) | |
| # return styled_error(f'Missing: {input_col}') | |
| #ret.update({i:j['acc,none'] for i,j in results.items()}) | |
| # fake data for testing... | |
| #ret.update({i:round(np.random.normal(1, 0.5, 1)[0], 2) for i,j in results.items()}) | |
| user_name = "czechbench_leaderboard" | |
| OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
| existing_eval_names = [] | |
| for fname in glob(f"{OUT_DIR}/*.json"): | |
| with open(fname, mode="r") as f: | |
| existing_eval = json.load(f) | |
| existing_eval_names.append(existing_eval['eval_name']) | |
| if ret['eval_name'] in existing_eval_names: | |
| print(f"Model name {ret['eval_name']} is used!") | |
| return styled_error(f"Model name {ret['eval_name']} is used!") | |
| out_path = f"{OUT_DIR}/{eval_name}_eval_request.json" | |
| with open(out_path, "w") as f: | |
| f.write(json.dumps(ret)) | |
| print("Uploading eval file") | |
| print("path_or_fileobj: ", out_path) | |
| print("path_in_repo: ",out_path.split("eval-queue/")[1]) | |
| print("repo_id: ", RESULTS_REPO) | |
| print("repo_type: ", "dataset") | |
| response = API.upload_file( | |
| path_or_fileobj=out_path, | |
| path_in_repo=out_path.split("eval-queue/")[1], | |
| repo_id=RESULTS_REPO, | |
| repo_type="dataset", | |
| commit_message=f"Add {eval_name} to eval queue", | |
| ) | |
| """ | |
| global REQUESTED_MODELS | |
| global USERS_TO_SUBMISSION_DATES | |
| if not REQUESTED_MODELS: | |
| REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
| user_name = "" | |
| model_path = model | |
| if "/" in model: | |
| user_name = model.split("/")[0] | |
| model_path = model.split("/")[1] | |
| precision = precision.split(" ")[0] | |
| current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
| if model_type is None or model_type == "": | |
| return styled_error("Please select a model type.") | |
| # Does the model actually exist? | |
| if revision == "": | |
| revision = "main" | |
| # Is the model on the hub? | |
| if weight_type in ["Delta", "Adapter"]: | |
| base_model_on_hub, error, _ = is_model_on_hub( | |
| model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True | |
| ) | |
| if not base_model_on_hub: | |
| return styled_error(f'Base model "{base_model}" {error}') | |
| if not weight_type == "Adapter": | |
| model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True) | |
| if not model_on_hub: | |
| return styled_error(f'Model "{model}" {error}') | |
| # Is the model info correctly filled? | |
| try: | |
| model_info = API.model_info(repo_id=model, revision=revision) | |
| except Exception: | |
| return styled_error("Could not get your model information. Please fill it up properly.") | |
| model_size = get_model_size(model_info=model_info, precision=precision) | |
| # Were the model card and license filled? | |
| try: | |
| license = model_info.cardData["license"] | |
| except Exception: | |
| return styled_error("Please select a license for your model") | |
| modelcard_OK, error_msg = check_model_card(model) | |
| if not modelcard_OK: | |
| return styled_error(error_msg) | |
| # Seems good, creating the eval | |
| print("Adding new eval") | |
| eval_entry = { | |
| "model": model, | |
| "base_model": base_model, | |
| "revision": revision, | |
| "precision": precision, | |
| "weight_type": weight_type, | |
| "status": "PENDING", | |
| "submitted_time": current_time, | |
| "model_type": model_type, | |
| "likes": model_info.likes, | |
| "params": model_size, | |
| "license": license, | |
| } | |
| # Check for duplicate submission | |
| if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: | |
| return styled_warning("This model has been already submitted.") | |
| print("Creating eval file") | |
| OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
| os.makedirs(OUT_DIR, exist_ok=True) | |
| out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" | |
| with open(out_path, "w") as f: | |
| f.write(json.dumps(eval_entry)) | |
| print("Uploading eval file") | |
| API.upload_file( | |
| path_or_fileobj=out_path, | |
| path_in_repo=out_path.split("eval-queue/")[1], | |
| repo_id=QUEUE_REPO, | |
| repo_type="dataset", | |
| commit_message=f"Add {model} to eval queue", | |
| ) | |
| # Remove the local file | |
| os.remove(out_path) | |
| """ | |
| return styled_message( | |
| "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
| ), "", "", "", "" | |