CJHauser commited on
Commit
081190f
·
verified ·
1 Parent(s): db687b9

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +26 -39
src/streamlit_app.py CHANGED
@@ -1,40 +1,27 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+
4
+ # Load your model and tokenizer
5
+ model_name = "CJHauser/PrisimAI-chat" # Your Hugging Face model
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+
9
+ # Streamlit App
10
+ st.title("PrisimAI Chatbot")
11
+
12
+ # Input box for user prompt
13
+ user_input = st.text_input("Ask a question:")
14
+
15
+ # When the user enters a prompt
16
+ if user_input:
17
+ # Encode the input
18
+ inputs = tokenizer(user_input, return_tensors="pt")
19
+
20
+ # Generate the response
21
+ outputs = model.generate(inputs['input_ids'], max_length=100)
22
+
23
+ # Decode the output
24
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
25
+
26
+ # Show the response
27
+ st.write(f"Response: {response}")