Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +26 -39
src/streamlit_app.py
CHANGED
@@ -1,40 +1,27 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
5 |
-
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load your model and tokenizer
|
5 |
+
model_name = "CJHauser/PrisimAI-chat" # Your Hugging Face model
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Streamlit App
|
10 |
+
st.title("PrisimAI Chatbot")
|
11 |
+
|
12 |
+
# Input box for user prompt
|
13 |
+
user_input = st.text_input("Ask a question:")
|
14 |
+
|
15 |
+
# When the user enters a prompt
|
16 |
+
if user_input:
|
17 |
+
# Encode the input
|
18 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
19 |
+
|
20 |
+
# Generate the response
|
21 |
+
outputs = model.generate(inputs['input_ids'], max_length=100)
|
22 |
+
|
23 |
+
# Decode the output
|
24 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
# Show the response
|
27 |
+
st.write(f"Response: {response}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|