CJHauser commited on
Commit
1263d52
Β·
verified Β·
1 Parent(s): 8f8db95

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
+
4
+ # Load your model
5
+ model_name = "CJHauser/PrisimAI-t5"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
8
+
9
+ def answer_question(context, question):
10
+ input_text = f"question: {question} context: {context}"
11
+ inputs = tokenizer.encode(input_text, return_tensors="pt", truncation=True)
12
+ outputs = model.generate(inputs, max_length=128)
13
+ answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
14
+ return answer
15
+
16
+ # Gradio UI
17
+ with gr.Blocks() as demo:
18
+ gr.Markdown("# πŸ€– PrisimAI Q&A\nAsk questions based on a given context.")
19
+
20
+ with gr.Row():
21
+ context = gr.Textbox(label="Context", placeholder="Paste your reference text here...", lines=8)
22
+
23
+ question = gr.Textbox(label="Your Question", placeholder="What do you want to know?")
24
+ answer = gr.Textbox(label="Answer", interactive=False)
25
+
26
+ btn = gr.Button("Get Answer")
27
+ btn.click(fn=answer_question, inputs=[context, question], outputs=answer)
28
+
29
+ demo.launch()