Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,32 +17,6 @@ model_id_4 = "lordtt13/emo-mobilebert"
|
|
| 17 |
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
| 18 |
|
| 19 |
|
| 20 |
-
def load_agent(model_id):
|
| 21 |
-
"""
|
| 22 |
-
This function load the agent's results
|
| 23 |
-
"""
|
| 24 |
-
# Load the metrics
|
| 25 |
-
metadata = get_metadata(model_id)
|
| 26 |
-
# get predictions
|
| 27 |
-
predictions = predict(model_id)
|
| 28 |
-
|
| 29 |
-
return model_id, predictions
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def get_metadata(model_id):
|
| 33 |
-
"""
|
| 34 |
-
Get the metadata of the model repo
|
| 35 |
-
:param model_id:
|
| 36 |
-
:return: metadata
|
| 37 |
-
"""
|
| 38 |
-
try:
|
| 39 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 40 |
-
metadata = metadata_load(readme_path)
|
| 41 |
-
print(metadata)
|
| 42 |
-
return metadata
|
| 43 |
-
except requests.exceptions.HTTPError:
|
| 44 |
-
return None
|
| 45 |
-
|
| 46 |
def get_prediction(model_id):
|
| 47 |
|
| 48 |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
|
@@ -68,61 +42,17 @@ with app:
|
|
| 68 |
"""
|
| 69 |
**Model Predictions**
|
| 70 |
""")
|
| 71 |
-
|
| 72 |
-
gr.Markdown(
|
| 73 |
-
"""
|
| 74 |
-
Model 1 = nlptown/bert-base-multilingual-uncased-sentiment
|
| 75 |
-
""")
|
| 76 |
-
|
| 77 |
-
with gr.Row():
|
| 78 |
-
btn1 = gr.Button("Predict - Model 1")
|
| 79 |
-
with gr.Row():
|
| 80 |
-
out_1 = gr.Textbox(label="Predictions for Model 1")
|
| 81 |
-
btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
|
| 82 |
-
|
| 83 |
-
gr.Markdown(
|
| 84 |
-
"""
|
| 85 |
-
Model 2 = microsoft/deberta-base
|
| 86 |
-
""")
|
| 87 |
-
|
| 88 |
-
with gr.Row():
|
| 89 |
-
btn2 = gr.Button("Predict - Model 2")
|
| 90 |
-
with gr.Row():
|
| 91 |
-
out_2 = gr.Textbox(label="Predictions for Model 2")
|
| 92 |
-
btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
|
| 93 |
-
|
| 94 |
-
gr.Markdown(
|
| 95 |
-
"""
|
| 96 |
-
Model 3 = distilbert-base-uncased-finetuned-sst-2-english"
|
| 97 |
-
""")
|
| 98 |
-
|
| 99 |
-
with gr.Row():
|
| 100 |
-
btn3 = gr.Button("Predict - Model 3")
|
| 101 |
-
with gr.Row():
|
| 102 |
-
out_3 = gr.Textbox(label="Predictions for Model 3")
|
| 103 |
-
btn3.click(fn=get_prediction(model_id_3), inputs=inp_1, outputs=out_3)
|
| 104 |
-
|
| 105 |
-
gr.Markdown(
|
| 106 |
-
"""
|
| 107 |
-
Model 4 = lordtt13/emo-mobilebert
|
| 108 |
-
""")
|
| 109 |
-
|
| 110 |
-
with gr.Row():
|
| 111 |
-
btn4 = gr.Button("Predict - Model 4")
|
| 112 |
with gr.Row():
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
out_5 = gr.Textbox(label="Predictions for Model 5")
|
| 125 |
-
btn5.click(fn=get_prediction(model_id_5), inputs=inp_1, outputs=out_5)
|
| 126 |
-
|
| 127 |
|
| 128 |
app.launch()
|
|
|
|
| 17 |
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def get_prediction(model_id):
|
| 21 |
|
| 22 |
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
|
|
|
| 42 |
"""
|
| 43 |
**Model Predictions**
|
| 44 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
with gr.Row():
|
| 46 |
+
with gr.Column():
|
| 47 |
+
text1 = gr.Textbox(label="Model 1 = nlptown/bert-base-multilingual-uncased-sentiment")
|
| 48 |
+
btn1 = gr.Button("Predict - Model 1")
|
| 49 |
+
text2 = gr.Textbox(label="Model 2 = microsoft/deberta-base")
|
| 50 |
+
btn2 = gr.Button("Predict - Model 2")
|
| 51 |
+
with gr.Column():
|
| 52 |
+
out_1 = gr.Textbox(label="Predictions for Model 1")
|
| 53 |
+
out_2 = gr.Textbox(label="Predictions for Model 2")
|
| 54 |
+
btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
|
| 55 |
+
btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
|
| 56 |
+
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
app.launch()
|