Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests.exceptions
|
| 3 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 4 |
+
from huggingface_hub.repocard import metadata_load
|
| 5 |
+
|
| 6 |
+
app = gr.Blocks()
|
| 7 |
+
|
| 8 |
+
def load_agent(model_id_1, model_id_2):
|
| 9 |
+
"""
|
| 10 |
+
This function load the agent's video and results
|
| 11 |
+
:return: video_path
|
| 12 |
+
"""
|
| 13 |
+
# Load the metrics
|
| 14 |
+
metadata_1 = get_metadata(model_id_1)
|
| 15 |
+
|
| 16 |
+
# Get the accuracy
|
| 17 |
+
results_1 = parse_metrics_accuracy(metadata_1)
|
| 18 |
+
|
| 19 |
+
# Load the video
|
| 20 |
+
video_path_1 = hf_hub_download(model_id_1, filename="replay.mp4")
|
| 21 |
+
|
| 22 |
+
# Load the metrics
|
| 23 |
+
metadata_2 = get_metadata(model_id_2)
|
| 24 |
+
|
| 25 |
+
# Get the accuracy
|
| 26 |
+
results_2 = parse_metrics_accuracy(metadata_2)
|
| 27 |
+
|
| 28 |
+
# Load the video
|
| 29 |
+
video_path_2 = hf_hub_download(model_id_2, filename="replay.mp4")
|
| 30 |
+
|
| 31 |
+
return model_id_1, video_path_1, results_1, model_id_2, video_path_2, results_2
|
| 32 |
+
|
| 33 |
+
def parse_metrics_accuracy(meta):
|
| 34 |
+
if "model-index" not in meta:
|
| 35 |
+
return None
|
| 36 |
+
result = meta["model-index"][0]["results"]
|
| 37 |
+
metrics = result[0]["metrics"]
|
| 38 |
+
accuracy = metrics[0]["value"]
|
| 39 |
+
return accuracy
|
| 40 |
+
|
| 41 |
+
def get_metadata(model_id):
|
| 42 |
+
"""
|
| 43 |
+
Get the metadata of the model repo
|
| 44 |
+
:param model_id:
|
| 45 |
+
:return: metadata
|
| 46 |
+
"""
|
| 47 |
+
try:
|
| 48 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 49 |
+
metadata = metadata_load(readme_path)
|
| 50 |
+
print(metadata)
|
| 51 |
+
return metadata
|
| 52 |
+
except requests.exceptions.HTTPError:
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
with app:
|
| 59 |
+
gr.Markdown(
|
| 60 |
+
"""
|
| 61 |
+
# Compare Deep Reinforcement Learning Agents 🤖
|
| 62 |
+
|
| 63 |
+
Type two models id you want to compare or check examples below.
|
| 64 |
+
""")
|
| 65 |
+
with gr.Row():
|
| 66 |
+
model1_input = gr.Textbox(label="Model 1")
|
| 67 |
+
model2_input = gr.Textbox(label="Model 2")
|
| 68 |
+
with gr.Row():
|
| 69 |
+
app_button = gr.Button("Compare models")
|
| 70 |
+
with gr.Row():
|
| 71 |
+
with gr.Column():
|
| 72 |
+
model1_name = gr.Markdown()
|
| 73 |
+
model1_video_output = gr.Video()
|
| 74 |
+
model1_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
|
| 75 |
+
with gr.Column():
|
| 76 |
+
model2_name = gr.Markdown()
|
| 77 |
+
model2_video_output = gr.Video()
|
| 78 |
+
model2_score_output = gr.Textbox(label="Mean Reward +/- Std Reward")
|
| 79 |
+
|
| 80 |
+
app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_video_output, model1_score_output, model2_name, model2_video_output, model2_score_output])
|
| 81 |
+
|
| 82 |
+
examples = gr.Examples(examples=[["sb3/a2c-AntBulletEnv-v0","sb3/ppo-AntBulletEnv-v0"],
|
| 83 |
+
["ThomasSimonini/a2c-AntBulletEnv-v0", "sb3/a2c-AntBulletEnv-v0"],
|
| 84 |
+
["sb3/dqn-SpaceInvadersNoFrameskip-v4", "sb3/a2c-SpaceInvadersNoFrameskip-v4"],
|
| 85 |
+
["ThomasSimonini/ppo-QbertNoFrameskip-v4","sb3/ppo-QbertNoFrameskip-v4"]],
|
| 86 |
+
inputs=[model1_input, model2_input])
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
app.launch()
|