File size: 6,885 Bytes
321f759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from langgraph.prebuilt import create_react_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from dotenv import load_dotenv, find_dotenv
from langchain_core.tools import tool
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import HumanMessage
from supabase import create_client, Client
import os

load_dotenv(find_dotenv())

DEFAULT_PROMPT = """
You are a helpful assistant tasked with answering questions using a set of tools. 
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER]. 
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. 
"""


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"web_results": formatted_search_docs}


@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arvix_results": formatted_search_docs}


@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    Args:
        a: first int
        b: second int
    """
    return a + b


@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    Args:
        a: first int
        b: second int
    """
    return a - b


@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    Args:
        a: first int
        b: second int
    """
    return a % b


class CustomAgent:
    def __init__(self):
        print("CustomAgent initialized.")

        # Initialize embeddings and vector store
        self.embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-mpnet-base-v2"
        )

        self.supabase: Client = create_client(
            os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY")
        )

        self.vector_store = SupabaseVectorStore(
            client=self.supabase,
            embedding=self.embeddings,
            table_name="documents_1",
            query_name="match_documents_1",
        )

        # Create the agent
        self.agent = create_react_agent(
            model="openai:gpt-4.1",
            tools=[
                web_search,
                add,
                subtract,
                multiply,
                divide,
                modulus,
                wiki_search,
                arvix_search,
            ],
            prompt=DEFAULT_PROMPT,
        )

    def retriever(self, query: str):
        """Retriever"""
        similar_question = self.vector_store.similarity_search(query)
        return HumanMessage(
            content=f"Here I provide a similar question and answer for reference, you can use it to answer the question: \n\n{similar_question[0].page_content}",
        )

    def __call__(self, question: str) -> str:
        """Run the agent on a question and return the answer."""
        print(f"CustomAgent received question (first 50 chars): {question[:50]}...")

        try:
            answer = self.agent.invoke(
                {
                    "messages": [
                        self.retriever(question),
                        HumanMessage(content=question),
                    ]
                }
            )
            result = answer["messages"][-1].content

            if "FINAL ANSWER: " in result:
                final_answer_start = result.find("FINAL ANSWER: ") + len(
                    "FINAL ANSWER: "
                )
                extracted_answer = result[final_answer_start:].strip()
                print(f"CustomAgent extracted answer: {extracted_answer}")
                return extracted_answer
            else:
                print(
                    f"CustomAgent returning full answer (no FINAL ANSWER found): {result}"
                )
                return result

        except Exception as e:
            print(f"Error in CustomAgent: {e}")
            return f"Error: {e}"


if __name__ == "__main__":
    agent = CustomAgent()
    agent(
        "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia."
    )
    agent(
        "How many at bats did the Yankee with the most walks in the 1977 regular season have that same season?"
    )
    agent(
        "In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?"
    )