File size: 4,798 Bytes
546a465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    model_name: str
    student_id: str
    results: dict

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue
            results[task.col_name] = accs.mean()

        return self(
            model_name=config.get("model_name", None),
            student_id=config.get("student_id", None),
            results=results,
        )

    def update_with_request_file(self, requests_path, model_name, student_id):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, model_name, student_id)
        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.date = request.get("submitted_time", "")
        except Exception:
            print(f"Could not find request file for {student_id}_{model_name}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name
            "Model Name": self.model_name,
        }

        # Add task-specific metrics
        for task in Tasks:
            data_dict[task.value.col_name] = self.results.get(task.value.col_name, None)

        # Add student ID and submission date
        data_dict["Student ID"] = self.student_id
        data_dict["Submission Date"] = self.date

        return data_dict


def get_request_file_for_model(requests_path, model_name, student_id):
    """Selects the correct request file for a given model."""
    request_files = os.path.join(
        requests_path, student_id,
        f"request_{student_id}_{model_name}*.json",
    )
    request_files = glob.glob(request_files)

    # Select the latest request file based on the modification date
    request_file = ""
    request_files = sorted(request_files, key=lambda x: os.path.getmtime(x), reverse=True)
    if len(request_files) > 0:
        request_file = request_files[0]

    return request_file


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # Filter out non-JSON files
        files = [f for f in files if f.endswith(".json") and f.startswith("result")]

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("result")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        eval_result.update_with_request_file(requests_path, eval_result.model_name, eval_result.student_id)

        # Store results of same eval together
        eval_name = f"{eval_result.student_id}_{eval_result.model_name}"
        eval_result.eval_name = eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results