import glob import json import math import os from dataclasses import dataclass import dateutil import numpy as np from src.display.formatting import make_clickable_model from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType from src.submission.check_validity import is_model_on_hub @dataclass class EvalResult: """Represents one full evaluation. Built from a combination of the result and request file for a given run. """ model_name: str student_id: str results: dict @classmethod def init_from_json_file(self, json_filepath): """Inits the result from the specific model result file""" with open(json_filepath) as fp: data = json.load(fp) config = data.get("config") # Extract results available in this file (some results are split in several files) results = {} for task in Tasks: task = task.value # We average all scores of a given metric (not all metrics are present in all files) accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) if accs.size == 0 or any([acc is None for acc in accs]): continue results[task.col_name] = accs.mean() return self( model_name=config.get("model_name", None), student_id=config.get("student_id", None), results=results, ) def update_with_request_file(self, requests_path, model_name, student_id): """Finds the relevant request file for the current model and updates info with it""" request_file = get_request_file_for_model(requests_path, model_name, student_id) try: with open(request_file, "r") as f: request = json.load(f) self.date = request.get("submitted_time", "") except Exception: print(f"Could not find request file for {student_id}_{model_name}") def to_dict(self): """Converts the Eval Result to a dict compatible with our dataframe display""" data_dict = { "eval_name": self.eval_name, # not a column, just a save name "Model Name": self.model_name, } # Add task-specific metrics for task in Tasks: data_dict[task.value.col_name] = self.results.get(task.value.col_name, None) # Add student ID and submission date data_dict["Student ID"] = self.student_id data_dict["Submission Date"] = self.date return data_dict def get_request_file_for_model(requests_path, model_name, student_id): """Selects the correct request file for a given model.""" request_files = os.path.join( requests_path, student_id, f"request_{student_id}_{model_name}*.json", ) request_files = glob.glob(request_files) # Select the latest request file based on the modification date request_file = "" request_files = sorted(request_files, key=lambda x: os.path.getmtime(x), reverse=True) if len(request_files) > 0: request_file = request_files[0] return request_file def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: """From the path of the results folder root, extract all needed info for results""" model_result_filepaths = [] for root, _, files in os.walk(results_path): # Filter out non-JSON files files = [f for f in files if f.endswith(".json") and f.startswith("result")] # Sort the files by date try: files.sort(key=lambda x: x.removesuffix(".json").removeprefix("result")[:-7]) except dateutil.parser._parser.ParserError: files = [files[-1]] for file in files: model_result_filepaths.append(os.path.join(root, file)) eval_results = {} for model_result_filepath in model_result_filepaths: # Creation of result eval_result = EvalResult.init_from_json_file(model_result_filepath) eval_result.update_with_request_file(requests_path, eval_result.model_name, eval_result.student_id) # Store results of same eval together eval_name = f"{eval_result.student_id}_{eval_result.model_name}" eval_result.eval_name = eval_name if eval_name in eval_results.keys(): eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) else: eval_results[eval_name] = eval_result results = [] for v in eval_results.values(): try: v.to_dict() # we test if the dict version is complete results.append(v) except KeyError: # not all eval values present continue return results