File size: 7,064 Bytes
4635155
 
 
 
 
b4191f7
 
 
4635155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4191f7
4635155
b4191f7
4635155
b4191f7
4635155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d4d59c
b4191f7
8dc6bdd
 
 
 
36e6b11
8dc6bdd
 
b4191f7
4635155
8dc6bdd
 
b4191f7
8dc6bdd
 
 
b4191f7
 
 
8dc6bdd
 
 
 
 
 
b4191f7
 
8dc6bdd
b4191f7
 
36e6b11
 
 
 
b4191f7
2d4d59c
4635155
8dc6bdd
4635155
 
 
 
 
 
 
b4191f7
4635155
 
 
b4191f7
4635155
 
 
 
 
 
 
 
 
 
 
 
 
 
b4191f7
4635155
 
b4191f7
4635155
 
 
 
 
 
 
b4191f7
4635155
 
 
b4191f7
4635155
b4191f7
4635155
 
 
 
b4191f7
4635155
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
from transformers import MarianMTModel, MarianTokenizer
from datetime import datetime
import langid
import os
import requests
import base64
import tempfile
import warnings

warnings.filterwarnings("ignore", message="Recommended: pip install sacremoses.")
langid.set_languages(['en', 'fr', 'sw'])

MODEL_MAP = {
    "English β†’ Swahili": "Helsinki-NLP/opus-mt-en-sw",
    "English β†’ French": "Helsinki-NLP/opus-mt-en-fr",
    "French β†’ English": "Helsinki-NLP/opus-mt-fr-en",
    "French β†’ Swahili (via English)": ["Helsinki-NLP/opus-mt-fr-en", "Helsinki-NLP/opus-mt-en-sw"]
}

TONE_MODIFIERS = {
    "Neutral": "",
    "Romantic": "Express this romantically: ",
    "Formal": "Translate this in a formal tone: ",
    "Casual": "Make this sound casual: "
}

loaded_models = {}

def load_model(model_name):
    if model_name not in loaded_models:
        tokenizer = MarianTokenizer.from_pretrained(model_name)
        model = MarianMTModel.from_pretrained(model_name)
        loaded_models[model_name] = (tokenizer, model)
    return loaded_models[model_name]

def detect_language(text):
    try:
        lang, score = langid.classify(text)
        return lang
    except:
        return "unknown"

def translate(text, direction, tone):
    detected_lang = detect_language(text)
    expected_src = direction.split(" β†’ ")[0].lower()
    warning = ""
    if expected_src.startswith("english") and detected_lang != "en":
        warning = f"⚠ Detected language is '{detected_lang}', but you selected English as source."
    elif expected_src.startswith("french") and detected_lang != "fr":
        warning = f"⚠ Detected language is '{detected_lang}', but you selected French as source."
    elif expected_src.startswith("swahili") and detected_lang != "sw":
        warning = f"⚠ Detected language is '{detected_lang}', but you selected Swahili as source."

    prompt = TONE_MODIFIERS[tone] + text
    model_info = MODEL_MAP[direction]

    if isinstance(model_info, list):
        tokenizer1, model1 = load_model(model_info[0])
        encoded1 = tokenizer1(prompt, return_tensors="pt", padding=True, truncation=True)
        intermediate = model1.generate(**encoded1)
        intermediate_text = tokenizer1.decode(intermediate[0], skip_special_tokens=True)

        tokenizer2, model2 = load_model(model_info[1])
        encoded2 = tokenizer2(intermediate_text, return_tensors="pt", padding=True, truncation=True)
        final = model2.generate(**encoded2)
        translation = tokenizer2.decode(final[0], skip_special_tokens=True)
    else:
        tokenizer, model = load_model(model_info)
        encoded = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
        generated = model.generate(**encoded)
        translation = tokenizer.decode(generated[0], skip_special_tokens=True)

    with open("translation_log.txt", "a", encoding="utf-8") as f:
        f.write(f"[{datetime.now()}] {direction} | Tone: {tone}\n")
        f.write(f"Input: {text}\nOutput: {translation}\n\n")

    return f"{warning}\n{translation}" if warning else translation

#new tts_via_api function with this:
def tts_via_api(text):
    import base64
    from io import BytesIO

    api_key = os.getenv("ELEVENLABS_API_KEY")
    voice_id = "21m00Tcm4TlvDq8ikWAM"  # Rachel

    if not api_key:
        return None

    url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"

    headers = {
        "xi-api-key": api_key,
        "Content-Type": "application/json",
        "accept": "audio/mpeg"
    }

    payload = {
        "text": text,
        "model_id": "eleven_monolingual_v1",
        "voice_settings": {
            "stability": 0.5,
            "similarity_boost": 0.75
        }
    }

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        output_path = "output.mp3"
        with open(output_path, "wb") as f:
            f.write(response.content)
        return output_path
    else:
        print("TTS API Error:", response.status_code, response.text)
        return None
        
def transcribe_and_translate(audio_path, direction, tone):
    import speech_recognition as sr
    recognizer = sr.Recognizer()
    try:
        with sr.AudioFile(audio_path) as source:
            audio = recognizer.record(source)
        if len(audio.frame_data) < 10000:
            return "⚠ Audio too short or empty. Please try again."
        text = recognizer.recognize_google(audio)
        return translate(text, direction, tone)
    except Exception as e:
        return f"⚠ Could not transcribe audio: {e}"

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("## 🌍 EAC Translator")
    gr.Markdown("Supports English, French, and Swahili. Includes tone control, language detection, voice input, and speech playback.")

    with gr.Tabs():
        with gr.Tab("πŸ“ Text Translation"):
            with gr.Column():
                input_text = gr.Textbox(label="Text to Translate", lines=3)
                direction = gr.Dropdown(choices=list(MODEL_MAP.keys()), label="Translation Direction", value="English β†’ Swahili")
                tone = gr.Radio(choices=list(TONE_MODIFIERS.keys()), label="Tone", value="Neutral")
                output_text = gr.Textbox(label="Translated Text", lines=3)
                with gr.Row():
                    translate_btn = gr.Button("Translate", scale=1)
                    speak_btn = gr.Button("πŸ”Š Speak Translation", scale=1)
                audio_output = gr.Audio(label="Playback", interactive=False)

        with gr.Tab("πŸŽ™ Voice Translation"):
            with gr.Column():
                audio_input = gr.Audio(sources=["microphone"], type="filepath", label="Speak Now")
                direction_voice = gr.Dropdown(choices=list(MODEL_MAP.keys()), label="Translation Direction", value="English β†’ Swahili")
                tone_voice = gr.Radio(choices=list(TONE_MODIFIERS.keys()), label="Tone", value="Neutral")
                voice_output = gr.Textbox(label="Translated Text")
                with gr.Row():
                    voice_translate_btn = gr.Button("Transcribe & Translate", scale=1)
                    voice_speak_btn = gr.Button("πŸ”Š Speak Translation", scale=1)
                audio_output2 = gr.Audio(label="Playback", interactive=False)

        translate_btn.click(fn=translate, inputs=[input_text, direction, tone], outputs=output_text)
        speak_btn.click(fn=tts_via_api, inputs=[output_text], outputs=audio_output)
        voice_translate_btn.click(fn=transcribe_and_translate, inputs=[audio_input, direction_voice, tone_voice], outputs=voice_output)
        voice_speak_btn.click(fn=tts_via_api, inputs=[voice_output], outputs=audio_output2)

    gr.Markdown(
        """<div style='text-align: center;'>
        <a href='https://eng-jobbers.vercel.app/' target='_blank' style='text-decoration: none; font-weight: bold;'>
        By Eng. Jobbers – Qtrinova Inc. NLP❀ 
        </a>
        </div>""",
        elem_id="footer"
    )

demo.launch()