File size: 13,468 Bytes
a05fb91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698c91d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>Vietnamese NLP Tasks – Benchmark Overview</title>
  <meta name="viewport" content="width=device-width,initial-scale=1">
  <style>
    body { font-family: 'Segoe UI', Arial, sans-serif; background: #f7faff; color: #263347; margin: 0; }
    .container { max-width: 1000px; margin: 36px auto; background: #fff; padding: 28px 20px 38px 20px; border-radius: 14px; box-shadow: 0 2px 14px #0002;}
    h1, h2, h3, h4 { margin-top: 1.7em; margin-bottom: 0.5em; }
    h1 { color: #12469b; font-size: 2.2em; margin-top: 0; }
    h2 { color: #188754; border-left: 6px solid #a3d7ff; padding-left: 12px;}
    h3, h4 { color: #1a324b;}
    table { width: 100%; border-collapse: collapse; margin: 1.1em 0 1.8em 0;}
    th, td { padding: 8px 10px; border-bottom: 1px solid #eee;}
    th { background: #eaf3ff; }
    tr:hover { background: #f6fbff;}
    a { color: #2369cb; text-decoration: none;}
    a:hover { text-decoration: underline;}
    ul, ol { margin-top: 0.5em; margin-bottom: 1.1em; }
    .dataset { background: #f1f8fc; border-left: 5px solid #97d3f6; padding: 8px 18px; margin: 12px 0 18px 0;}
    .note { color: #555; background: #f6fcf7; border-left: 5px solid #7de59d; padding: 6px 16px; margin: 14px 0 20px 0;}
    .icon { font-size: 1.1em; margin-right: 6px;}
    .footer { text-align: center; font-size: 0.96em; color: #999; margin-top: 36px; }
    @media (max-width: 700px) {
      .container { padding: 6px; }
      table, th, td { font-size: 14px;}
    }
  </style>
</head>
<body>
<div class="container">

  <h1>πŸ‡»πŸ‡³ Vietnamese NLP Tasks <span style="font-size:0.8em; color:#555;">β€” Benchmark & SOTA Overview</span></h1>
  <div style="margin-bottom:1.2em; color:#537fc2;">
    <span class="icon">πŸ“ˆ</span>
    <b>This page tracks major Vietnamese NLP datasets and models for <u>Dependency Parsing</u>, <u>Intent Detection</u>, <u>Machine Translation</u>, <u>NER</u>, <u>POS Tagging</u>, <u>Semantic Parsing</u>, and <u>Word Segmentation</u>.</b>
  </div>

  <!-- DEPENDENCY PARSING -->
  <h2>Dependency Parsing</h2>
  <div class="dataset">
    <span class="icon">πŸ—‚οΈ</span>
    <b>VnDT v1.1/v1.0</b>: Benchmark treebank >10K sentences. <br>
    <b>Test:</b> 1,020 (v1.1), Dev: 200, Rest: Train.
  </div>

  <h3>VnDT v1.1</h3>
  <table>
    <tr>
      <th>Model</th>
      <th>LAS</th>
      <th>UAS</th>
      <th>Paper</th>
      <th>Code</th>
    </tr>
    <tr>
      <td>PhoNLP (2021)</td><td>79.11</td><td>85.47</td>
      <td><a href="https://aclanthology.org/2021.naacl-demos.1.pdf">PhoNLP</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoNLP">Official</a></td>
    </tr>
    <tr>
      <td>PhoBERT-base (2020)</td><td>78.77</td><td>85.22</td>
      <td><a href="https://arxiv.org/abs/2003.00744">PhoBERT</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoBERT">Official</a></td>
    </tr>
    <tr>
      <td>Biaffine (2017)</td><td>74.99</td><td>81.19</td>
      <td><a href="https://arxiv.org/abs/1611.01734">Biaffine Parsing</a></td>
      <td></td>
    </tr>
    <tr>
      <td>VnCoreNLP (2018)</td><td>71.38</td><td>77.35</td>
      <td><a href="http://aclweb.org/anthology/N18-5012">VnCoreNLP</a></td>
      <td><a href="https://github.com/vncorenlp/VnCoreNLP">Official</a></td>
    </tr>
  </table>

  <h3>VnDT v1.0 (Gold POS)</h3>
  <table>
    <tr>
      <th>Model</th>
      <th>LAS</th>
      <th>UAS</th>
      <th>Paper</th>
      <th>Code</th>
    </tr>
    <tr>
      <td>VnCoreNLP (2018)</td><td>73.39</td><td>79.02</td>
      <td><a href="http://aclweb.org/anthology/N18-5012">VnCoreNLP</a></td>
      <td><a href="https://github.com/vncorenlp/VnCoreNLP">Official</a></td>
    </tr>
    <tr>
      <td>BIST BiLSTM graph (2016)</td><td>73.17</td><td>79.39</td>
      <td><a href="https://aclweb.org/anthology/Q16-1023">BIST Parser</a></td>
      <td><a href="https://github.com/elikip/bist-parser/tree/master/bmstparser/src">Official</a></td>
    </tr>
    <tr>
      <td>MSTparser (2006)</td><td>70.29</td><td>76.47</td>
      <td><a href="http://www.aclweb.org/anthology/P05-1012">MSTparser</a></td>
      <td></td>
    </tr>
  </table>

  <!-- INTENT DETECTION -->
  <h2>Intent Detection & Slot Filling</h2>
  <div class="dataset">
    <span class="icon">πŸ›«</span>
    <b>PhoATIS Dataset</b> (flight booking domain): Train: 4,478, Dev: 500, Test: 893
  </div>
  <table>
    <tr>
      <th>Model</th><th>Intent Acc.</th><th>Slot F1</th><th>Sent. Acc.</th><th>Paper</th><th>Code</th>
    </tr>
    <tr>
      <td>JointIDSF (2021)</td><td>97.62</td><td>94.98</td><td>86.25</td>
      <td><a href="https://arxiv.org/abs/2104.02021">JointIDSF</a></td>
      <td><a href="https://github.com/VinAIResearch/JointIDSF">Official</a></td>
    </tr>
    <tr>
      <td>JointBERT+PhoBERT</td><td>97.40</td><td>94.75</td><td>85.55</td>
      <td><a href="https://arxiv.org/abs/2104.02021">JointIDSF</a></td>
      <td><a href="https://github.com/VinAIResearch/JointIDSF">Official</a></td>
    </tr>
  </table>

  <!-- MACHINE TRANSLATION -->
  <h2>Machine Translation</h2>
  <div class="dataset">
    <span class="icon">🌐</span>
    <b>PhoMT Dataset</b>: 3.02M sentence pairs | 6 domains (TED, WikiHow, MediaWiki, OpenSubtitles, News, Blog)
  </div>
  <table>
    <tr>
      <th>Model</th><th>EN→VI (BLEU)</th><th>VI→EN (BLEU)</th><th>Paper</th><th>Code</th>
    </tr>
    <tr>
      <td>mBART (2020)</td><td>43.46</td><td>39.78</td>
      <td><a href="https://arxiv.org/abs/2001.08210">mBART</a></td>
      <td><a href="https://github.com/pytorch/fairseq/tree/main/examples/mbart">Link</a></td>
    </tr>
    <tr>
      <td>Transformer-big</td><td>42.94</td><td>37.83</td>
      <td><a href="https://arxiv.org/abs/1706.03762">Transformer</a></td>
      <td><a href="https://github.com/pytorch/fairseq/tree/main/examples/translation">Link</a></td>
    </tr>
  </table>
  <div class="dataset">
    <span class="icon">πŸ“‹</span>
    <b>IWSLT2015</b>: 150K sentence pairs (EN↔VI) | <a href="https://github.com/tensorflow/nmt">Data & Scripts</a>
  </div>
  <table>
    <tr>
      <th>Model</th><th>BLEU</th><th>Paper</th><th>Code</th>
    </tr>
    <tr>
      <td>Nguyen & Salazar (2019)</td><td>32.8</td>
      <td><a href="https://arxiv.org/abs/1910.05895">Transformers w/o Tears</a></td>
      <td><a href="https://github.com/tnq177/transformers_without_tears">Official</a></td>
    </tr>
    <tr>
      <td>Provilkov et al. (2019)</td><td>33.27 (uncased)</td>
      <td><a href="https://arxiv.org/abs/1910.13267">BPE-Dropout</a></td>
      <td></td>
    </tr>
    <tr>
      <td>Xu et al. (2019)</td><td>31.4</td>
      <td><a href="https://papers.nips.cc/paper/8689-understanding-and-improving-layer-normalization.pdf">Layer Norm</a></td>
      <td><a href="https://github.com/lancopku/AdaNorm">Official</a></td>
    </tr>
    <tr>
      <td>Transformer (2017)</td><td>28.9</td>
      <td><a href="http://papers.nips.cc/paper/7181-attention-is-all-you-need">Transformer</a></td>
      <td><a href="https://github.com/duyvuleo/Transformer-DyNet">Link</a></td>
    </tr>
  </table>

  <!-- NER -->
  <h2>Named Entity Recognition (NER)</h2>
  <div class="dataset">
    <span class="icon">🩺</span>
    <b>PhoNER_COVID19</b>: 10 types, 34,984 entities, 10,027 sentences
  </div>
  <table>
    <tr>
      <th>Model</th><th>F1</th><th>Paper</th><th>Code</th>
    </tr>
    <tr>
      <td>PhoBERT-large</td><td>94.5</td>
      <td><a href="https://arxiv.org/abs/2003.00744">PhoBERT</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoBERT">Official</a></td>
    </tr>
    <tr>
      <td>XLM-R-large</td><td>93.8</td>
      <td><a href="https://aclanthology.org/2020.acl-main.747/">XLM-R</a></td>
      <td><a href="https://github.com/facebookresearch/XLM">Official</a></td>
    </tr>
    <tr>
      <td>BiLSTM-CRF + CNN-char</td><td>91.0</td>
      <td><a href="http://www.aclweb.org/anthology/P16-1101">BiLSTM-CRF</a></td>
      <td><a href="https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf/">Link</a></td>
    </tr>
  </table>

  <div class="dataset">
    <span class="icon">πŸ“„</span>
    <b>VLSP 2016 NER</b>: 16,861 train/dev, 2,831 test sentences.
  </div>
  <table>
    <tr>
      <th>Model</th><th>F1</th><th>Paper</th><th>Code</th>
    </tr>
    <tr>
      <td>PhoBERT-large</td><td>94.7</td>
      <td><a href="https://arxiv.org/abs/2003.00744">PhoBERT</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoBERT">Official</a></td>
    </tr>
    <tr>
      <td>PhoNLP</td><td>94.41</td>
      <td><a href="https://aclanthology.org/2021.naacl-demos.1.pdf">PhoNLP</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoNLP">Official</a></td>
    </tr>
    <tr>
      <td>vELECTRA</td><td>94.07</td>
      <td><a href="https://arxiv.org/abs/2006.15994">vELECTRA</a></td>
      <td><a href="https://github.com/fpt-corp/viBERT">Official</a></td>
    </tr>
    <tr>
      <td>VnCoreNLP</td><td>91.30</td>
      <td><a href="http://aclweb.org/anthology/N18-5012">VnCoreNLP</a></td>
      <td><a href="https://github.com/vncorenlp/VnCoreNLP">Official</a></td>
    </tr>
  </table>

  <!-- PART OF SPEECH -->
  <h2>Part-of-Speech Tagging</h2>
  <div class="dataset">
    <span class="icon">πŸ”€</span>
    <b>VLSP 2013</b>: 27,870 train/dev, 2,120 test
  </div>
  <table>
    <tr>
      <th>Model</th><th>Accuracy</th><th>Paper</th><th>Code</th>
    </tr>
    <tr>
      <td>PhoBERT-large</td><td>96.8</td>
      <td><a href="https://arxiv.org/abs/2003.00744">PhoBERT</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoBERT">Official</a></td>
    </tr>
    <tr>
      <td>vELECTRA</td><td>96.77</td>
      <td><a href="https://arxiv.org/abs/2006.15994">vELECTRA</a></td>
      <td><a href="https://github.com/fpt-corp/viBERT">Official</a></td>
    </tr>
    <tr>
      <td>PhoNLP</td><td>96.76</td>
      <td><a href="https://aclanthology.org/2021.naacl-demos.1.pdf">PhoNLP</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoNLP">Official</a></td>
    </tr>
    <tr>
      <td>PhoBERT-base</td><td>96.7</td>
      <td><a href="https://arxiv.org/abs/2003.00744">PhoBERT</a></td>
      <td><a href="https://github.com/VinAIResearch/PhoBERT">Official</a></td>
    </tr>
    <tr>
      <td>VnCoreNLP-VnMarMoT</td><td>95.88</td>
      <td><a href="http://aclweb.org/anthology/U17-1013">VnMarMoT</a></td>
      <td><a href="https://github.com/datquocnguyen/vnmarmot">Official</a></td>
    </tr>
    <tr>
      <td>BiLSTM-CRF + CNN-char</td><td>95.40</td>
      <td><a href="http://www.aclweb.org/anthology/P16-1101">BiLSTM-CRF</a></td>
      <td><a href="https://github.com/XuezheMax/LasagneNLP">Official</a></td>
    </tr>
    <tr>
      <td>RDRPOSTagger</td><td>95.11</td>
      <td><a href="http://www.aclweb.org/anthology/E14-2005">RDRPOSTagger</a></td>
      <td><a href="https://github.com/datquocnguyen/rdrpostagger">Official</a></td>
    </tr>
  </table>

  <!-- SEMANTIC PARSING -->
  <h2>Semantic Parsing</h2>
  <div class="dataset">
    <span class="icon">πŸ—ƒοΈ</span>
    <b>ViText2SQL</b>: 10K question/SQL pairs, the first public Text-to-SQL dataset for Vietnamese.
  </div>
  <table>
    <tr>
      <th>Model</th><th>Exact Match Acc.</th><th>Paper</th><th>Code</th><th>Note</th>
    </tr>
    <tr>
      <td>IRNet (2019)</td><td>53.2</td>
      <td><a href="https://aclanthology.org/2020.findings-emnlp.364/">ViText2SQL</a></td>
      <td><a href="https://github.com/microsoft/IRNet">Link</a></td>
      <td>Using PhoBERT encoder</td>
    </tr>
    <tr>
      <td>EditSQL (2019)</td><td>52.6</td>
      <td><a href="https://aclanthology.org/2020.findings-emnlp.364/">ViText2SQL</a></td>
      <td><a href="https://github.com/ryanzhumich/editsql">Link</a></td>
      <td>Using PhoBERT encoder</td>
    </tr>
  </table>

  <!-- WORD SEGMENTATION -->
  <h2>Word Segmentation</h2>
  <div class="dataset">
    <span class="icon">βœ‚οΈ</span>
    <b>VLSP 2013</b>: 75k train, 2,120 test sentences (manually word-segmented)
  </div>
  <table>
    <tr>
      <th>Model</th><th>F1</th><th>Paper</th><th>Code</th>
    </tr>
    <tr>
      <td>UITws-v1 (2019)</td><td>98.06</td>
      <td><a href="https://arxiv.org/abs/2006.07804">UITws-v1</a></td>
      <td><a href="https://github.com/ngannlt/UITws-v1">Official</a></td>
    </tr>
    <tr>
      <td>VnCoreNLP-RDRsegmenter (2018)</td><td>97.90</td>
      <td><a href="http://www.lrec-conf.org/proceedings/lrec2018/pdf/55.pdf">VnCoreNLP</a></td>
      <td><a href="https://github.com/datquocnguyen/RDRsegmenter">Official</a></td>
    </tr>
    <tr>
      <td>UETsegmenter (2016)</td><td>97.87</td>
      <td><a href="http://doi.org/10.1109/RIVF.2016.7800279">UETsegmenter</a></td>
      <td><a href="https://github.com/phongnt570/UETsegmenter">Official</a></td>
    </tr>
    <tr>
      <td>vnTokenizer (2008)</td><td>97.33</td>
      <td><a href="https://link.springer.com/chapter/10.1007/978-3-540-88282-4_23">vnTokenizer</a></td>
      <td></td>
    </tr>
    <tr>
      <td>JVnSegmenter (2006)</td><td>97.06</td>
      <td><a href="http://www.aclweb.org/anthology/Y06-1028">JVnSegmenter</a></td>
      <td></td>
    </tr>
  </table>

  <div class="footer">
    NLP Progress – Benchmarks collected by the open-source community.<br>
    <span style="color:#ccc;">Style inspired by <a href="https://github.com/sebastianruder/NLP-progress" target="_blank">NLP-progress</a></span>
  </div>
</div>
</body>
</html>