File size: 5,530 Bytes
c8bce00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
import numpy as np
import time
from data import write_image_tensor, PatchDataModule, prepare_data, image2tensor, tensor2image
import torch
from tqdm import tqdm
from bigdl.nano.pytorch.trainer import Trainer
from torch.utils.data import DataLoader
from pathlib import Path
from torch.utils.data import Dataset
import datetime


device = 'cpu' 
dtype = torch.float32
generator = torch.load("models/generator.pt")
generator.eval()
generator.to(device, dtype)
params = {'batch_size': 1,
          'num_workers': 0}


class ImageDataset(Dataset):
    def __init__(self, img):
        self.imgs = [image2tensor(img)]
    def __getitem__(self, idx: int) -> dict:
        return self.imgs[idx]
    
    def __len__(self) -> int:
        return len(self.imgs)


# quantize model
data_path = Path('data/webcam')
train_image_dd = prepare_data(data_path)
dm = PatchDataModule(train_image_dd, patch_size=2**6,
                     batch_size=2**3, patch_num=2**6)
train_loader = dm.train_dataloader()
train_loader_iter = iter(train_loader)
quantized_model = Trainer.quantize(generator, accelerator=None,
                                   calib_dataloader=train_loader)


def original_transfer(input_img):
    w, h, _ = input_img.shape
    print(datetime.datetime.now())
    print("input size: ", w, h)
    # resize too large image
    if w > 3000 or h > 3000:
        ratio = min(3000 / w, 3000 / h)
        w = int(w * ratio)
        h = int(h * ratio)
    if w % 4 != 0 or h % 4 != 0:
        NW = int((w // 4) * 4)
        NH = int((h // 4) * 4)
        input_img = np.resize(input_img,(NW,NH,3))
    st = time.perf_counter()
    dataset = ImageDataset(input_img)
    loader = DataLoader(dataset, **params)
    with torch.no_grad():
        for inputs in tqdm(loader):
            inputs = inputs.to(device, dtype)
            st = time.perf_counter()
            outputs = generator(inputs)
            ori_time = time.perf_counter() - st
            ori_time = "{:.3f}s".format(ori_time)
            ori_image = np.array(tensor2image(outputs[0]))
            del inputs
            del outputs
    return ori_image, ori_time

def nano_transfer(input_img):
    w, h, _ = input_img.shape
    print(datetime.datetime.now())
    print("input size: ", w, h)
    # resize too large image
    if w > 3000 or h > 3000:
        ratio = min(3000 / w, 3000 / h)
        w = int(w * ratio)
        h = int(h * ratio)
    if w % 4 != 0 or h % 4 != 0:
        NW = int((w // 4) * 4)
        NH = int((h // 4) * 4)
        input_img = np.resize(input_img,(NW,NH,3))
    st = time.perf_counter()
    dataset = ImageDataset(input_img)
    loader = DataLoader(dataset, **params)
    with torch.no_grad():
        for inputs in tqdm(loader):
            inputs = inputs.to(device, dtype)
            st = time.perf_counter()
            outputs = quantized_model(inputs)
            nano_time = time.perf_counter() - st
            nano_time = "{:.3f}s".format(nano_time)
            nano_image = np.array(tensor2image(outputs[0]))
            del inputs
            del outputs
    return nano_image, nano_time


def clear():
    return None, None, None, None
    

demo = gr.Blocks()

with demo:
    gr.Markdown("<h1><center>BigDL-Nano inference demo</center></h1>")
    with gr.Row().style(equal_height=False):
        with gr.Column():
            gr.Markdown('''
                <h2>Overview</h2>
                
                BigDL-Nano is a library in [BigDL 2.0](https://github.com/intel-analytics/BigDL) that allows the users to transparently accelerate their deep learning pipelines (including data processing, training and inference) by automatically integrating optimized libraries, best-known configurations, and software optimizations. </p>
                
                The video on the right shows how the user can easily enable quantization using BigDL-Nano (with just a couple of lines of code); you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details.
                ''')
        with gr.Column():
            gr.Video(value="nano_quantize_api.mp4")
    gr.Markdown('''
            <h2>Demo</h2>
            
            This section uses an image stylization example to demostrate the speedup of the above code when using quantization in BigDL-Nano (about 2~3x inference time speedup). The demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/eval.py).
            ''')
    with gr.Row().style(equal_height=False):
        input_img = gr.Image(label="input image", value="Marvelous_Maisel.jpg", source="upload")
        with gr.Column():
            ori_but = gr.Button("Standard PyTorch Lightning")
            nano_but = gr.Button("BigDL-Nano")
            clear_but = gr.Button("Clear Output")
    with gr.Row().style(equal_height=False):
        with gr.Column():
            ori_time = gr.Text(label="Standard PyTorch Lightning latency")
            ori_image = gr.Image(label="Standard PyTorch Lightning output image")
        with gr.Column():
            nano_time = gr.Text(label="BigDL-Nano latency")
            nano_image = gr.Image(label="BigDL-Nano output image")
    
    ori_but.click(original_transfer, inputs=input_img, outputs=[ori_image, ori_time])
    nano_but.click(nano_transfer, inputs=input_img, outputs=[nano_image, nano_time])
    clear_but.click(clear, inputs=None, outputs=[ori_image, ori_time, nano_image, nano_time])
    

demo.launch(share=True, enable_queue=True)