Spaces:
Runtime error
Runtime error
File size: 5,530 Bytes
c8bce00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import gradio as gr
import numpy as np
import time
from data import write_image_tensor, PatchDataModule, prepare_data, image2tensor, tensor2image
import torch
from tqdm import tqdm
from bigdl.nano.pytorch.trainer import Trainer
from torch.utils.data import DataLoader
from pathlib import Path
from torch.utils.data import Dataset
import datetime
device = 'cpu'
dtype = torch.float32
generator = torch.load("models/generator.pt")
generator.eval()
generator.to(device, dtype)
params = {'batch_size': 1,
'num_workers': 0}
class ImageDataset(Dataset):
def __init__(self, img):
self.imgs = [image2tensor(img)]
def __getitem__(self, idx: int) -> dict:
return self.imgs[idx]
def __len__(self) -> int:
return len(self.imgs)
# quantize model
data_path = Path('data/webcam')
train_image_dd = prepare_data(data_path)
dm = PatchDataModule(train_image_dd, patch_size=2**6,
batch_size=2**3, patch_num=2**6)
train_loader = dm.train_dataloader()
train_loader_iter = iter(train_loader)
quantized_model = Trainer.quantize(generator, accelerator=None,
calib_dataloader=train_loader)
def original_transfer(input_img):
w, h, _ = input_img.shape
print(datetime.datetime.now())
print("input size: ", w, h)
# resize too large image
if w > 3000 or h > 3000:
ratio = min(3000 / w, 3000 / h)
w = int(w * ratio)
h = int(h * ratio)
if w % 4 != 0 or h % 4 != 0:
NW = int((w // 4) * 4)
NH = int((h // 4) * 4)
input_img = np.resize(input_img,(NW,NH,3))
st = time.perf_counter()
dataset = ImageDataset(input_img)
loader = DataLoader(dataset, **params)
with torch.no_grad():
for inputs in tqdm(loader):
inputs = inputs.to(device, dtype)
st = time.perf_counter()
outputs = generator(inputs)
ori_time = time.perf_counter() - st
ori_time = "{:.3f}s".format(ori_time)
ori_image = np.array(tensor2image(outputs[0]))
del inputs
del outputs
return ori_image, ori_time
def nano_transfer(input_img):
w, h, _ = input_img.shape
print(datetime.datetime.now())
print("input size: ", w, h)
# resize too large image
if w > 3000 or h > 3000:
ratio = min(3000 / w, 3000 / h)
w = int(w * ratio)
h = int(h * ratio)
if w % 4 != 0 or h % 4 != 0:
NW = int((w // 4) * 4)
NH = int((h // 4) * 4)
input_img = np.resize(input_img,(NW,NH,3))
st = time.perf_counter()
dataset = ImageDataset(input_img)
loader = DataLoader(dataset, **params)
with torch.no_grad():
for inputs in tqdm(loader):
inputs = inputs.to(device, dtype)
st = time.perf_counter()
outputs = quantized_model(inputs)
nano_time = time.perf_counter() - st
nano_time = "{:.3f}s".format(nano_time)
nano_image = np.array(tensor2image(outputs[0]))
del inputs
del outputs
return nano_image, nano_time
def clear():
return None, None, None, None
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>BigDL-Nano inference demo</center></h1>")
with gr.Row().style(equal_height=False):
with gr.Column():
gr.Markdown('''
<h2>Overview</h2>
BigDL-Nano is a library in [BigDL 2.0](https://github.com/intel-analytics/BigDL) that allows the users to transparently accelerate their deep learning pipelines (including data processing, training and inference) by automatically integrating optimized libraries, best-known configurations, and software optimizations. </p>
The video on the right shows how the user can easily enable quantization using BigDL-Nano (with just a couple of lines of code); you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details.
''')
with gr.Column():
gr.Video(value="nano_quantize_api.mp4")
gr.Markdown('''
<h2>Demo</h2>
This section uses an image stylization example to demostrate the speedup of the above code when using quantization in BigDL-Nano (about 2~3x inference time speedup). The demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/eval.py).
''')
with gr.Row().style(equal_height=False):
input_img = gr.Image(label="input image", value="Marvelous_Maisel.jpg", source="upload")
with gr.Column():
ori_but = gr.Button("Standard PyTorch Lightning")
nano_but = gr.Button("BigDL-Nano")
clear_but = gr.Button("Clear Output")
with gr.Row().style(equal_height=False):
with gr.Column():
ori_time = gr.Text(label="Standard PyTorch Lightning latency")
ori_image = gr.Image(label="Standard PyTorch Lightning output image")
with gr.Column():
nano_time = gr.Text(label="BigDL-Nano latency")
nano_image = gr.Image(label="BigDL-Nano output image")
ori_but.click(original_transfer, inputs=input_img, outputs=[ori_image, ori_time])
nano_but.click(nano_transfer, inputs=input_img, outputs=[nano_image, nano_time])
clear_but.click(clear, inputs=None, outputs=[ori_image, ori_time, nano_image, nano_time])
demo.launch(share=True, enable_queue=True) |