|
_base_ = [ |
|
'../_base_/models/occ_mask_rcnn_swin_fpn.py', |
|
'../_base_/datasets/walt_vehicle.py', |
|
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
model = dict( |
|
backbone=dict( |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7, |
|
ape=False, |
|
drop_path_rate=0.1, |
|
patch_norm=True, |
|
use_checkpoint=False |
|
), |
|
neck=dict(in_channels=[96, 192, 384, 768])) |
|
|
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) |
|
|
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='AutoAugment', |
|
policies=[ |
|
[ |
|
dict(type='Resize', |
|
img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), |
|
(608, 1333), (640, 1333), (672, 1333), (704, 1333), |
|
(736, 1333), (768, 1333), (800, 1333)], |
|
multiscale_mode='value', |
|
keep_ratio=True) |
|
], |
|
[ |
|
dict(type='Resize', |
|
img_scale=[(400, 1333), (500, 1333), (600, 1333)], |
|
multiscale_mode='value', |
|
keep_ratio=True), |
|
dict(type='RandomCrop', |
|
crop_type='absolute_range', |
|
crop_size=(384, 600), |
|
allow_negative_crop=True), |
|
dict(type='Resize', |
|
img_scale=[(480, 1333), (512, 1333), (544, 1333), |
|
(576, 1333), (608, 1333), (640, 1333), |
|
(672, 1333), (704, 1333), (736, 1333), |
|
(768, 1333), (800, 1333)], |
|
multiscale_mode='value', |
|
override=True, |
|
keep_ratio=True) |
|
] |
|
]), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), |
|
] |
|
data = dict(train=dict(pipeline=train_pipeline)) |
|
|
|
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, |
|
paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), |
|
'relative_position_bias_table': dict(decay_mult=0.), |
|
'norm': dict(decay_mult=0.)})) |
|
lr_config = dict(step=[8, 11]) |
|
runner = dict(type='EpochBasedRunnerAmp', max_epochs=12) |
|
|
|
|
|
fp16 = None |
|
optimizer_config = dict( |
|
type="DistOptimizerHook", |
|
update_interval=1, |
|
grad_clip=None, |
|
coalesce=True, |
|
bucket_size_mb=-1, |
|
use_fp16=True, |
|
) |
|
|