|
import logging |
|
import sys |
|
|
|
import torch |
|
|
|
from mmdet.core import (bbox2roi, bbox_mapping, merge_aug_bboxes, |
|
merge_aug_masks, multiclass_nms) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
if sys.version_info >= (3, 7): |
|
from mmdet.utils.contextmanagers import completed |
|
|
|
|
|
class BBoxTestMixin(object): |
|
|
|
if sys.version_info >= (3, 7): |
|
|
|
async def async_test_bboxes(self, |
|
x, |
|
img_metas, |
|
proposals, |
|
rcnn_test_cfg, |
|
rescale=False, |
|
bbox_semaphore=None, |
|
global_lock=None): |
|
"""Asynchronized test for box head without augmentation.""" |
|
rois = bbox2roi(proposals) |
|
roi_feats = self.bbox_roi_extractor( |
|
x[:len(self.bbox_roi_extractor.featmap_strides)], rois) |
|
if self.with_shared_head: |
|
roi_feats = self.shared_head(roi_feats) |
|
sleep_interval = rcnn_test_cfg.get('async_sleep_interval', 0.017) |
|
|
|
async with completed( |
|
__name__, 'bbox_head_forward', |
|
sleep_interval=sleep_interval): |
|
cls_score, bbox_pred = self.bbox_head(roi_feats) |
|
|
|
img_shape = img_metas[0]['img_shape'] |
|
scale_factor = img_metas[0]['scale_factor'] |
|
det_bboxes, det_labels = self.bbox_head.get_bboxes( |
|
rois, |
|
cls_score, |
|
bbox_pred, |
|
img_shape, |
|
scale_factor, |
|
rescale=rescale, |
|
cfg=rcnn_test_cfg) |
|
return det_bboxes, det_labels |
|
|
|
def simple_test_bboxes(self, |
|
x, |
|
img_metas, |
|
proposals, |
|
rcnn_test_cfg, |
|
rescale=False): |
|
"""Test only det bboxes without augmentation. |
|
|
|
Args: |
|
x (tuple[Tensor]): Feature maps of all scale level. |
|
img_metas (list[dict]): Image meta info. |
|
proposals (Tensor or List[Tensor]): Region proposals. |
|
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. |
|
rescale (bool): If True, return boxes in original image space. |
|
Default: False. |
|
|
|
Returns: |
|
tuple[list[Tensor], list[Tensor]]: The first list contains |
|
the boxes of the corresponding image in a batch, each |
|
tensor has the shape (num_boxes, 5) and last dimension |
|
5 represent (tl_x, tl_y, br_x, br_y, score). Each Tensor |
|
in the second list is the labels with shape (num_boxes, ). |
|
The length of both lists should be equal to batch_size. |
|
""" |
|
|
|
if torch.onnx.is_in_onnx_export(): |
|
assert len( |
|
img_metas |
|
) == 1, 'Only support one input image while in exporting to ONNX' |
|
img_shapes = img_metas[0]['img_shape_for_onnx'] |
|
else: |
|
img_shapes = tuple(meta['img_shape'] for meta in img_metas) |
|
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) |
|
|
|
|
|
|
|
if isinstance(proposals, list): |
|
|
|
max_size = max([proposal.size(0) for proposal in proposals]) |
|
for i, proposal in enumerate(proposals): |
|
supplement = proposal.new_full( |
|
(max_size - proposal.size(0), proposal.size(1)), 0) |
|
proposals[i] = torch.cat((supplement, proposal), dim=0) |
|
rois = torch.stack(proposals, dim=0) |
|
else: |
|
rois = proposals |
|
|
|
batch_index = torch.arange( |
|
rois.size(0), device=rois.device).float().view(-1, 1, 1).expand( |
|
rois.size(0), rois.size(1), 1) |
|
rois = torch.cat([batch_index, rois[..., :4]], dim=-1) |
|
batch_size = rois.shape[0] |
|
num_proposals_per_img = rois.shape[1] |
|
|
|
|
|
rois = rois.view(-1, 5) |
|
bbox_results = self._bbox_forward(x, rois) |
|
cls_score = bbox_results['cls_score'] |
|
bbox_pred = bbox_results['bbox_pred'] |
|
|
|
|
|
rois = rois.reshape(batch_size, num_proposals_per_img, -1) |
|
cls_score = cls_score.reshape(batch_size, num_proposals_per_img, -1) |
|
|
|
if not torch.onnx.is_in_onnx_export(): |
|
|
|
supplement_mask = rois[..., -1] == 0 |
|
cls_score[supplement_mask, :] = 0 |
|
|
|
|
|
|
|
if bbox_pred is not None: |
|
|
|
if isinstance(bbox_pred, torch.Tensor): |
|
bbox_pred = bbox_pred.reshape(batch_size, |
|
num_proposals_per_img, -1) |
|
if not torch.onnx.is_in_onnx_export(): |
|
bbox_pred[supplement_mask, :] = 0 |
|
else: |
|
|
|
|
|
bbox_preds = self.bbox_head.bbox_pred_split( |
|
bbox_pred, num_proposals_per_img) |
|
|
|
det_bboxes = [] |
|
det_labels = [] |
|
for i in range(len(proposals)): |
|
|
|
supplement_mask = proposals[i][..., -1] == 0 |
|
for bbox in bbox_preds[i]: |
|
bbox[supplement_mask] = 0 |
|
det_bbox, det_label = self.bbox_head.get_bboxes( |
|
rois[i], |
|
cls_score[i], |
|
bbox_preds[i], |
|
img_shapes[i], |
|
scale_factors[i], |
|
rescale=rescale, |
|
cfg=rcnn_test_cfg) |
|
det_bboxes.append(det_bbox) |
|
det_labels.append(det_label) |
|
return det_bboxes, det_labels |
|
else: |
|
bbox_pred = None |
|
|
|
return self.bbox_head.get_bboxes( |
|
rois, |
|
cls_score, |
|
bbox_pred, |
|
img_shapes, |
|
scale_factors, |
|
rescale=rescale, |
|
cfg=rcnn_test_cfg) |
|
|
|
def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg): |
|
"""Test det bboxes with test time augmentation.""" |
|
aug_bboxes = [] |
|
aug_scores = [] |
|
for x, img_meta in zip(feats, img_metas): |
|
|
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
flip_direction = img_meta[0]['flip_direction'] |
|
|
|
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, |
|
scale_factor, flip, flip_direction) |
|
rois = bbox2roi([proposals]) |
|
bbox_results = self._bbox_forward(x, rois) |
|
bboxes, scores = self.bbox_head.get_bboxes( |
|
rois, |
|
bbox_results['cls_score'], |
|
bbox_results['bbox_pred'], |
|
img_shape, |
|
scale_factor, |
|
rescale=False, |
|
cfg=None) |
|
aug_bboxes.append(bboxes) |
|
aug_scores.append(scores) |
|
|
|
merged_bboxes, merged_scores = merge_aug_bboxes( |
|
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) |
|
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, |
|
rcnn_test_cfg.score_thr, |
|
rcnn_test_cfg.nms, |
|
rcnn_test_cfg.max_per_img) |
|
return det_bboxes, det_labels |
|
|
|
|
|
class MaskTestMixin(object): |
|
|
|
if sys.version_info >= (3, 7): |
|
|
|
async def async_test_mask(self, |
|
x, |
|
img_metas, |
|
det_bboxes, |
|
det_labels, |
|
rescale=False, |
|
mask_test_cfg=None): |
|
"""Asynchronized test for mask head without augmentation.""" |
|
|
|
ori_shape = img_metas[0]['ori_shape'] |
|
scale_factor = img_metas[0]['scale_factor'] |
|
if det_bboxes.shape[0] == 0: |
|
segm_result = [[] for _ in range(self.mask_head.num_classes)] |
|
else: |
|
if rescale and not isinstance(scale_factor, |
|
(float, torch.Tensor)): |
|
scale_factor = det_bboxes.new_tensor(scale_factor) |
|
_bboxes = ( |
|
det_bboxes[:, :4] * |
|
scale_factor if rescale else det_bboxes) |
|
mask_rois = bbox2roi([_bboxes]) |
|
mask_feats = self.mask_roi_extractor( |
|
x[:len(self.mask_roi_extractor.featmap_strides)], |
|
mask_rois) |
|
|
|
if self.with_shared_head: |
|
mask_feats = self.shared_head(mask_feats) |
|
if mask_test_cfg and mask_test_cfg.get('async_sleep_interval'): |
|
sleep_interval = mask_test_cfg['async_sleep_interval'] |
|
else: |
|
sleep_interval = 0.035 |
|
async with completed( |
|
__name__, |
|
'mask_head_forward', |
|
sleep_interval=sleep_interval): |
|
mask_pred = self.mask_head(mask_feats) |
|
segm_result = self.mask_head.get_seg_masks( |
|
mask_pred, _bboxes, det_labels, self.test_cfg, ori_shape, |
|
scale_factor, rescale) |
|
return segm_result |
|
|
|
def simple_test_mask(self, |
|
x, |
|
img_metas, |
|
det_bboxes, |
|
det_labels, |
|
rescale=False): |
|
"""Simple test for mask head without augmentation.""" |
|
|
|
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) |
|
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) |
|
|
|
|
|
|
|
if isinstance(det_bboxes, list): |
|
|
|
max_size = max([bboxes.size(0) for bboxes in det_bboxes]) |
|
for i, (bbox, label) in enumerate(zip(det_bboxes, det_labels)): |
|
supplement_bbox = bbox.new_full( |
|
(max_size - bbox.size(0), bbox.size(1)), 0) |
|
supplement_label = label.new_full((max_size - label.size(0), ), |
|
0) |
|
det_bboxes[i] = torch.cat((supplement_bbox, bbox), dim=0) |
|
det_labels[i] = torch.cat((supplement_label, label), dim=0) |
|
det_bboxes = torch.stack(det_bboxes, dim=0) |
|
det_labels = torch.stack(det_labels, dim=0) |
|
|
|
batch_size = det_bboxes.size(0) |
|
num_proposals_per_img = det_bboxes.shape[1] |
|
|
|
|
|
|
|
det_bboxes = det_bboxes[..., :4] |
|
if rescale: |
|
if not isinstance(scale_factors[0], float): |
|
scale_factors = det_bboxes.new_tensor(scale_factors) |
|
det_bboxes = det_bboxes * scale_factors.unsqueeze(1) |
|
|
|
batch_index = torch.arange( |
|
det_bboxes.size(0), device=det_bboxes.device).float().view( |
|
-1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1) |
|
mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) |
|
mask_rois = mask_rois.view(-1, 5) |
|
mask_results = self._mask_forward(x, mask_rois) |
|
mask_pred = mask_results['mask_pred'] |
|
try: |
|
mask_full_pred, mask_occ_pred = mask_pred |
|
except: |
|
mask_full_pred = mask_pred |
|
mask_occ_pred = mask_pred |
|
|
|
|
|
|
|
mask_full_preds = mask_full_pred.reshape(batch_size, num_proposals_per_img, |
|
*mask_full_pred.shape[1:]) |
|
|
|
mask_occ_preds = mask_occ_pred.reshape(batch_size, num_proposals_per_img, |
|
*mask_occ_pred.shape[1:]) |
|
|
|
|
|
|
|
segm_results = [] |
|
for i in range(batch_size): |
|
mask_full_pred = mask_full_preds[i] |
|
mask_occ_pred = mask_occ_preds[i] |
|
det_bbox = det_bboxes[i] |
|
det_label = det_labels[i] |
|
|
|
|
|
supplement_mask = det_bbox[..., -1] != 0 |
|
mask_full_pred = mask_full_pred[supplement_mask] |
|
mask_occ_pred = mask_occ_pred[supplement_mask] |
|
det_bbox = det_bbox[supplement_mask] |
|
det_label = det_label[supplement_mask] |
|
|
|
if det_label.shape[0] == 0: |
|
segm_results.append([[] |
|
for _ in range(self.mask_head.num_classes) |
|
]) |
|
else: |
|
segm_result_vis = self.mask_head.get_seg_masks( |
|
mask_full_pred[:,0:1], det_bbox, det_label, self.test_cfg, |
|
ori_shapes[i], scale_factors[i], rescale) |
|
|
|
segm_result_occ = self.mask_head.get_seg_masks( |
|
mask_occ_pred[:,0:1], det_bbox, det_label, self.test_cfg, |
|
ori_shapes[i], scale_factors[i], rescale) |
|
|
|
segm_result = segm_result_vis |
|
segm_result[1] = segm_result_occ[0] |
|
|
|
segm_results.append(segm_result) |
|
return segm_results |
|
|
|
def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels): |
|
"""Test for mask head with test time augmentation.""" |
|
if det_bboxes.shape[0] == 0: |
|
segm_result = [[] for _ in range(self.mask_head.num_classes)] |
|
else: |
|
aug_masks = [] |
|
for x, img_meta in zip(feats, img_metas): |
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
flip_direction = img_meta[0]['flip_direction'] |
|
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, |
|
scale_factor, flip, flip_direction) |
|
mask_rois = bbox2roi([_bboxes]) |
|
mask_results = self._mask_forward(x, mask_rois) |
|
|
|
aug_masks.append( |
|
mask_results['mask_pred'].sigmoid().cpu().numpy()) |
|
merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg) |
|
|
|
ori_shape = img_metas[0][0]['ori_shape'] |
|
segm_result = self.mask_head.get_seg_masks( |
|
merged_masks, |
|
det_bboxes, |
|
det_labels, |
|
self.test_cfg, |
|
ori_shape, |
|
scale_factor=1.0, |
|
rescale=False) |
|
return segm_result |
|
|