idolezal commited on
Commit
e84b5e6
·
1 Parent(s): e66cb9a

Heatmap: First the larger models, then the smaller ones

Browse files
Files changed (1) hide show
  1. server.py +6 -6
server.py CHANGED
@@ -840,8 +840,8 @@ class LeaderboardServer:
840
  sorted_indices = sizes_series.sort_values(ascending=False).index
841
  original_scores = original_scores.loc[sorted_indices] # Sort rows by model size
842
 
843
- # Smaller models
844
- original_scores_sub = original_scores[sizes_series < 16]
845
 
846
  # Apply quantile transformation independently for each row
847
  normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
@@ -850,12 +850,12 @@ class LeaderboardServer:
850
  p1 = create_heatmap(
851
  normalized_scores_sub,
852
  original_scores_sub * 100,
853
- x_axis_label="Model <16B",
854
  y_axis_label=fig_y_axis_label,
855
  )
856
 
857
- # Bigger models
858
- original_scores_sub = original_scores[sizes_series >= 16]
859
 
860
  # Apply quantile transformation independently for each row
861
  normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
@@ -864,7 +864,7 @@ class LeaderboardServer:
864
  p2 = create_heatmap(
865
  normalized_scores_sub,
866
  original_scores_sub * 100,
867
- x_axis_label="Model 16B",
868
  y_axis_label=fig_y_axis_label,
869
  y_axis_visible=False,
870
  )
 
840
  sorted_indices = sizes_series.sort_values(ascending=False).index
841
  original_scores = original_scores.loc[sorted_indices] # Sort rows by model size
842
 
843
+ # Bigger models
844
+ original_scores_sub = original_scores[sizes_series >= 16]
845
 
846
  # Apply quantile transformation independently for each row
847
  normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
 
850
  p1 = create_heatmap(
851
  normalized_scores_sub,
852
  original_scores_sub * 100,
853
+ x_axis_label="Model 16B",
854
  y_axis_label=fig_y_axis_label,
855
  )
856
 
857
+ # Smaller models
858
+ original_scores_sub = original_scores[sizes_series < 16]
859
 
860
  # Apply quantile transformation independently for each row
861
  normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
 
864
  p2 = create_heatmap(
865
  normalized_scores_sub,
866
  original_scores_sub * 100,
867
+ x_axis_label="Model <16B",
868
  y_axis_label=fig_y_axis_label,
869
  y_axis_visible=False,
870
  )