Spaces:
Sleeping
Sleeping
Heatmap: First the larger models, then the smaller ones
Browse files
server.py
CHANGED
@@ -840,8 +840,8 @@ class LeaderboardServer:
|
|
840 |
sorted_indices = sizes_series.sort_values(ascending=False).index
|
841 |
original_scores = original_scores.loc[sorted_indices] # Sort rows by model size
|
842 |
|
843 |
-
#
|
844 |
-
original_scores_sub = original_scores[sizes_series
|
845 |
|
846 |
# Apply quantile transformation independently for each row
|
847 |
normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
|
@@ -850,12 +850,12 @@ class LeaderboardServer:
|
|
850 |
p1 = create_heatmap(
|
851 |
normalized_scores_sub,
|
852 |
original_scores_sub * 100,
|
853 |
-
x_axis_label="Model
|
854 |
y_axis_label=fig_y_axis_label,
|
855 |
)
|
856 |
|
857 |
-
#
|
858 |
-
original_scores_sub = original_scores[sizes_series
|
859 |
|
860 |
# Apply quantile transformation independently for each row
|
861 |
normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
|
@@ -864,7 +864,7 @@ class LeaderboardServer:
|
|
864 |
p2 = create_heatmap(
|
865 |
normalized_scores_sub,
|
866 |
original_scores_sub * 100,
|
867 |
-
x_axis_label="Model
|
868 |
y_axis_label=fig_y_axis_label,
|
869 |
y_axis_visible=False,
|
870 |
)
|
|
|
840 |
sorted_indices = sizes_series.sort_values(ascending=False).index
|
841 |
original_scores = original_scores.loc[sorted_indices] # Sort rows by model size
|
842 |
|
843 |
+
# Bigger models
|
844 |
+
original_scores_sub = original_scores[sizes_series >= 16]
|
845 |
|
846 |
# Apply quantile transformation independently for each row
|
847 |
normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
|
|
|
850 |
p1 = create_heatmap(
|
851 |
normalized_scores_sub,
|
852 |
original_scores_sub * 100,
|
853 |
+
x_axis_label="Model ≥16B",
|
854 |
y_axis_label=fig_y_axis_label,
|
855 |
)
|
856 |
|
857 |
+
# Smaller models
|
858 |
+
original_scores_sub = original_scores[sizes_series < 16]
|
859 |
|
860 |
# Apply quantile transformation independently for each row
|
861 |
normalized_scores_sub = original_scores_sub.apply(lambda x: (x - x.min()) / (x.max() - x.min()), axis=0)
|
|
|
864 |
p2 = create_heatmap(
|
865 |
normalized_scores_sub,
|
866 |
original_scores_sub * 100,
|
867 |
+
x_axis_label="Model <16B",
|
868 |
y_axis_label=fig_y_axis_label,
|
869 |
y_axis_visible=False,
|
870 |
)
|