Spaces:
Running
Running
File size: 16,941 Bytes
f417250 49d6897 f417250 77887da f417250 1fa987c f417250 49d6897 f417250 5c68c1c f417250 49d6897 1b6e9e5 f417250 49d6897 f417250 49d6897 f417250 49d6897 f417250 1b6e9e5 f417250 1b6e9e5 f417250 1fa987c f417250 49d6897 1b6e9e5 2c5fd3f f417250 2c5fd3f 49d6897 2c5fd3f 49d6897 2c5fd3f 49d6897 2c5fd3f 49d6897 2c5fd3f f43bf19 2c5fd3f 49d6897 2c5fd3f 49d6897 f417250 2c5fd3f 49d6897 2c5fd3f 49d6897 2c5fd3f 49d6897 2c5fd3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import glob
import os
import logging
import pandas as pd
import gradio as gr
from gradio.themes.utils.sizes import text_md
from content import (HEADER_MARKDOWN, LEADERBOARD_TAB_TITLE_MARKDOWN, SUBMISSION_TAB_TITLE_MARKDOWN,
)
import json
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import time
import gradio as gr
from huggingface_hub import HfApi, snapshot_download
from compare_significance import check_significance, SUPPORTED_METRICS
from model_compare import ModelCompare
JSON_DATASET_DIR = Path("../json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
api = HfApi()
ORG= "CZLC"
REPO = f"{ORG}/LLM_benchmark_data"
def greet(name: str) -> str:
return "Hello " + name + "!"
DATASET_VERSIONS = ['dev-set-1', 'dev-set-2']
HF_TOKEN = os.environ.get("HF_TOKEN")
class LeaderboardServer:
def __init__(self, server_address):
self.server_address = server_address
self.repo_type = "dataset"
self.local_leaderboard = snapshot_download(self.server_address, repo_type=self.repo_type, token=HF_TOKEN,local_dir = "./")
self.submisssion_id_to_file = {} # Map submission ids to file paths
def on_submit(self):
self.local_leaderboard = snapshot_download(self.server_address,repo_type=self.repo_type, token=HF_TOKEN,local_dir = "./")
def get_leaderboard(self):
results = []
new_results = []
submission_ids = set()
# pre-computed ranks
with open(os.path.join(self.local_leaderboard, "metadata", "ranks.json")) as ranks_file:
ranks = json.load(ranks_file)
model_compare = ModelCompare()
ranks = model_compare.get_tasks_ranks(ranks)
# Models data
for submission in glob.glob(os.path.join(self.local_leaderboard, "data") + "/*.json"):
data = json.load(open(submission))
submission_id = data["metadata"]["model_description"]
if submission_id in submission_ids:
continue
submission_ids.add(submission_id)
self.submisssion_id_to_file[submission_id] = submission
local_results = {task: list(task_ranks).index(submission_id)+1 for task, task_ranks in ranks.items()}
local_results["submission_id"] = submission_id
results.append(local_results)
dataframe = pd.DataFrame.from_records(results)
# Reorder to have the id (model description) first
df_order = ["submission_id"] + [col for col in dataframe.columns if col != "submission_id"]
dataframe = dataframe[df_order]
return dataframe
def compute_ranks(self):
''' Compute rankings on every submit '''
self.get_leaderboard()
ids = list(self.submisssion_id_to_file.keys())
rankings = {id: {} for id in ids}
for a_idx in range(len(ids)):
for b_idx in range(a_idx+1, len(ids)):
modelA_id = ids[a_idx]
modelB_id = ids[b_idx]
res = self.compare_models(modelA_id, modelB_id)
rankings[modelA_id][modelB_id] = {
task: data["significant"] for task,data in res.items()
}
rankings[modelB_id][modelA_id] = {
task: not data["significant"] for task,data in res.items()
}
return rankings
def compare_models(self, modelA, modelB):
modelA_path = self.submisssion_id_to_file.get(modelA)
modelB_path = self.submisssion_id_to_file.get(modelB)
return check_significance(modelA_path, modelB_path)
def get_rankings(self):
# TODO retrieve saved rankings for models on tasks
pass
def save_json(self,file, submission_name) -> None:
filename = os.path.basename(file)
api.upload_file(
path_or_fileobj=file,
path_in_repo=f"data/{submission_name}_{filename}",
repo_id=self.server_address,
repo_type=self.repo_type,
token=HF_TOKEN,
)
leaderboard_server = LeaderboardServer(REPO)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
LEADERBOARD_TYPES = ['LLM',]
MAX_SUBMISSIONS_PER_24H = 2
# DATASET_VERSIONS = ['dev-set-1', 'dev-set-2']
# CHALLENGE_NAME = 'NOTSOFAR1'
# if __name__ == '__main__':
with (gr.Blocks(theme=gr.themes.Soft(text_size=text_md), css="footer {visibility: hidden}") as main):
app_state = gr.State({})
# with gr.Row():
# greet_name = gr.Textbox(label="Name")
# greet_output = gr.Textbox(label="Greetings")
# greet_btn = gr.Button("Greet")
# greet_btn.click(fn=greet, inputs=greet_name, outputs=greet_output).success(
# fn=save_json,
# inputs=[greet_name, greet_output],
# outputs=None,
# )
with gr.Row():
with gr.Row():
gr.Markdown(HEADER_MARKDOWN)
with gr.Row():
# Leaderboards Tab #
####################
def populate_leaderboard(leaderboard_type, dataset_version):
gr.Info('Loading leaderboard...')
time.sleep(1)
leaderboard_df = leaderboard_server.get_leaderboard()
# leaderboard_df = lb_server.get_leaderboard(
# submission_type=leaderboard_type, dataset_version=dataset_version)
# if leaderboard_df.empty:
return leaderboard_df
# return leaderboard_df
def create_leaderboard_tab(tab_name: str, idx: int, dataset_version_dropdown: gr.Dropdown):
# dataset_version = dataset_version_dropdown.value
print(f'Creating tab for {tab_name}, idx={idx}, dataset_version={dataset_version_dropdown}')
with gr.Tab(id=tab_name, label=tab_name) as leaderboard_tab:
leaderboard_table = gr.DataFrame(populate_leaderboard(tab_name, None)) if idx == 0 \
else gr.DataFrame(pd.DataFrame(columns=['No submissions yet']))
leaderboard_tab.select(fn=populate_leaderboard,
inputs=[gr.Text(tab_name, visible=False)],
outputs=[leaderboard_table])
return leaderboard_table
def on_dropdown_change():
first_tab_name = LEADERBOARD_TYPES[0]
leaderboard_server.on_submit()
return gr.Tabs(selected=first_tab_name), populate_leaderboard(first_tab_name, None)
with gr.Tab('Leaderboard') as leaderboards_tab:
# with gr.Row():
# gr.Markdown(LEADERBOARD_TAB_TITLE_MARKDOWN)
# with gr.Row():
# with gr.Column():
# dataset_version_drop = gr.Dropdown(choices=DATASET_VERSIONS, multiselect=False,
# value=DATASET_VERSIONS[-1], label="Dataset",
# interactive=True)
# with gr.Column():
# gr.Markdown('') # Empty column for spacing
# with gr.Column():
# gr.Markdown('') # Empty column for spacing
# with gr.Column():
# gr.Markdown('') # Empty column for spacing
# with gr.Row():
# with gr.Tabs() as leaderboards_tabs:
# leaderboard_tables_list = []
# for leaderboard_idx, leaderboard_type in enumerate(LEADERBOARD_TYPES):
# l_tab = create_leaderboard_tab(leaderboard_type, leaderboard_idx, None)
# leaderboard_tables_list.append(l_tab)
# change the table based on the selected model
def on_dropdown_change(model_detail):
leaderboard = leaderboard_server.get_leaderboard()
return leaderboard[leaderboard["submission_id"] == model_detail]
results_table = gr.DataFrame(leaderboard_server.get_leaderboard(), interactive=False, label=None, visible=True)
model_detail = gr.Dropdown(choices=list(leaderboard_server.get_leaderboard()["submission_id"]), label="Select model", interactive=True)
model_detail_button = gr.Button("Show model detail", interactive=True)
model_detail_button.click(
fn=on_dropdown_change,
inputs=[model_detail],
outputs=[results_table]
)
# results_table.select(fn=on_dropdown_change, inputs=[model_detail], outputs=[results_table])
# dataset_version_drop.select(fn=on_dropdown_change, inputs=[dataset_version_drop],
# outputs=[leaderboards_tabs, leaderboard_tables_list[0]])
##################
# Submission Tab #
##################
with gr.Tab('Submission'):
with gr.Column():
def on_submit_pressed():
return gr.update(value='Processing submission...', interactive=False)
def validate_submission_inputs(team_name, submission_zip, submission_type, token):
if not team_name or not submission_zip or not submission_type:
raise ValueError('Please fill in all fields')
if not os.path.exists(submission_zip):
raise ValueError('File does not exist')
# if not submission_zip.endswith('.zip'):
# raise ValueError('File must be a zip')
# if not token:
# raise ValueError('Please insert a valid Hugging Face token')
def process_submission(team_name, submission, submission_type, description,
app_state, request: gr.Request):
logging.info(f'{team_name}: new submission for track: {submission_type}')
try:
token = app_state.get('hf_token')
validate_submission_inputs(team_name, submission, submission_type, token)
except ValueError as err:
gr.Warning(str(err))
return
# metadata = {'challenge_name': CHALLENGE_NAME,
# "dataset_version": DATASET_VERSIONS[-1],
# 'team_name': team_name,
# 'submission_type': submission_type,
# 'description': description,
# 'token': token,
# 'file_name': os.path.basename(submission_zip),
# 'file_size_mb': os.path.getsize(submission_zip) / 1024 / 1024,
# 'ip': request.client.host}
leaderboard_server.save_json(submission,team_name)
try:
gr.Info('Processing submission...')
# response = lb_server.add_submission(token=token, file_path=submission_zip, metadata=metadata)
# if 'error' in response:
# gr.Warning(f'Failed to process submission - {response["error"]}')
# else:
gr.Info('Done processing submission')
except Exception as e:
gr.Warning(f'Submission failed to upload - {e}')
def on_submit_done():
on_dropdown_change()
leaderboard_server.on_submit()
# leaderboard_tab.children[0] = gr.DataFrame(populate_leaderboard(None, None))
# leaderboard_tab.render()
return gr.update(value='Submit', interactive=True)
def show_leaderboard():
gr.Info("Loding leaderboard...")
return leaderboard_server.get_leaderboard()
gr.Markdown(
"""
# Model submission
Model can be compared with other models and submitted\n
Click **Compare results** to compare your model with other models in the leaderboard\n
Click **Submit results** to submit your model to the leaderboard
(Comparison by itself is not a submission)
"""
)
submission_team_name_tb = gr.Textbox(label='Team Name')
# submission_type_radio = gr.Radio(label='Submission Track', choices=LEADERBOARD_TYPES)
with gr.Row():
description_tb = gr.Textbox(label='Description', type='text')
link_to_model_tb = gr.Textbox(label='Link to model', type='text')
with gr.Row():
hf_token_tb = gr.Textbox(label='Token', type='password')
submissions_24h_txt = gr.Textbox(label='Submissions 24h', value='')
submission_file_path = gr.File(label='Upload your results', type='filepath')
compare_results_button = gr.DataFrame(show_leaderboard(), interactive=False, label=None, visible=True)
# Button that triggers shows the current leaderboard
show_results_button = gr.Button("Compare results", interactive=True)
show_results_button.click(
fn=show_leaderboard,
outputs=[compare_results_button]
)
submission_btn = gr.Button(value='Submit results', interactive=True)
submission_btn.click(
fn=on_submit_pressed,
outputs=[submission_btn]
).then(
fn=process_submission,
inputs=[submission_team_name_tb, submission_file_path, description_tb, app_state]
).then(
fn=on_submit_done,
outputs=[submission_btn]
)
# .then(
# fn=on_dropdown_change,
# outputs=[leaderboards_tabs, leaderboard_tables_list[0]]
# )
# # My Submissions Tab #
# ######################
# with gr.Tab('My Submissions') as my_submissions_tab:
# def on_my_submissions_tab_select(app_state):
# hf_token = app_state.get('hf_token')
# if not hf_token:
# return pd.DataFrame(columns=['Please insert your Hugging Face token'])
# # submissions = lb_server.get_submissions_by_hf_token(hf_token=hf_token)
# # if submissions.empty:
# # submissions = pd.DataFrame(columns=['No submissions yet'])
# # return submissions
#
# gr.Markdown(MY_SUBMISSIONS_TAB_TITLE_MARKDOWN)
# my_submissions_table = gr.DataFrame()
#
# my_submissions_tab.select(fn=on_my_submissions_tab_select, inputs=[app_state],
# outputs=[my_submissions_table])
# my_submissions_token_tb = gr.Textbox(label='Token', type='password')
def on_token_insert(hf_token, app_state):
gr.Info(f'Verifying token...')
submission_count = None
# if hf_token:
# submission_count = lb_server.get_submission_count_last_24_hours(hf_token=hf_token)
if submission_count is None:
# Invalid token
app_state['hf_token'] = None
submissions_24h_str = ''
team_submissions_df = pd.DataFrame(columns=['Invalid Token'])
gr.Warning('Invalid token')
# else:
# app_state['hf_token'] = hf_token
# submissions_24h_str = f'{submission_count}/{MAX_SUBMISSIONS_PER_24H}'
# team_submissions_df = lb_server.get_submissions_by_hf_token(hf_token=hf_token)
# if team_submissions_df.empty:
# team_submissions_df = pd.DataFrame(columns=['No submissions yet'])
# gr.Info('Token verified!')
return app_state, team_submissions_df, submissions_24h_str
hf_token_tb.change(fn=on_token_insert, inputs=[hf_token_tb, app_state],
outputs=[app_state, submissions_24h_txt])
# my_submissions_token_tb.change(fn=on_token_insert, inputs=[my_submissions_token_tb, app_state],
# outputs=[app_state, my_submissions_table, submissions_24h_txt])
main.launch()
|