Spaces:
Running
Running
Bokeh figure - adjustable width
Browse files- analyze_winscore.py +12 -6
analyze_winscore.py
CHANGED
|
@@ -125,12 +125,18 @@ def create_scatter_plot_with_curve_with_variances_named(category, variance_acros
|
|
| 125 |
})
|
| 126 |
|
| 127 |
# Create a figure for the category
|
| 128 |
-
p = figure(
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
# Plot filtered data with unique colors and scaled marker sizes
|
| 136 |
p.scatter('x', 'y', size='marker_sizes', source=source_filtered, fill_alpha=0.6, color='color', marker='symbol')
|
|
|
|
| 125 |
})
|
| 126 |
|
| 127 |
# Create a figure for the category
|
| 128 |
+
p = figure(
|
| 129 |
+
sizing_mode="stretch_width",
|
| 130 |
+
height=800,
|
| 131 |
+
#title=f"{category} vs Model Size vs Variance Across Categories",
|
| 132 |
+
#tools="pan,wheel_zoom,box_zoom,reset,save",
|
| 133 |
+
tooltips=[
|
| 134 |
+
("Model", "@model_names"),
|
| 135 |
+
("Model Size (B parameters)", "@sizes"),
|
| 136 |
+
("Variance", "@variance"), # Added variance to the tooltip
|
| 137 |
+
("Performance", "@y"),
|
| 138 |
+
]
|
| 139 |
+
)
|
| 140 |
|
| 141 |
# Plot filtered data with unique colors and scaled marker sizes
|
| 142 |
p.scatter('x', 'y', size='marker_sizes', source=source_filtered, fill_alpha=0.6, color='color', marker='symbol')
|