CZerion commited on
Commit
dc9f5c9
·
verified ·
1 Parent(s): 84057a3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+
5
+ # Initialize the plant disease classification pipeline
6
+ # You can replace the model with any fine-tuned plant disease model hosted on Hugging Face
7
+ plant_disease_classifier = pipeline(
8
+ task="image-classification",
9
+ model="nielsr/plant-disease-model",
10
+ top_k=3 # return top 3 predictions
11
+ )
12
+
13
+ def diagnose_plant_health(image: Image.Image):
14
+ """
15
+ Takes a PIL Image of a plant leaf and returns:
16
+ - Top predicted disease label
17
+ - Confidence score
18
+ - Care advice based on the label
19
+ """
20
+ # Run the image through the classification pipeline
21
+ results = plant_disease_classifier(image)
22
+
23
+ # Format top-3 predictions
24
+ predictions = []
25
+ for res in results:
26
+ label = res['label']
27
+ score = res['score']
28
+ predictions.append(f"{label} ({score*100:.1f}%)")
29
+
30
+ # Determine advice based on the top prediction
31
+ top_label = results[0]['label'].lower()
32
+ if "healthy" in top_label:
33
+ advice = "Your plant looks healthy! Maintain regular watering and adequate sunlight."
34
+ else:
35
+ advice = (
36
+ f"Detected symptom: {results[0]['label']}. "
37
+ "Consider the following care steps:\n"
38
+ "1. Isolate the plant to prevent spread.\n"
39
+ "2. Prune affected areas with sterilized tools.\n"
40
+ "3. Apply an appropriate fungicide or treatment."
41
+ )
42
+
43
+ return "\n".join(predictions), advice
44
+
45
+ # Building the Gradio interface
46
+ iface = gr.Interface(
47
+ fn=diagnose_plant_health,
48
+ inputs=gr.Image(type="pil", label="Upload Plant Leaf Image"),
49
+ outputs=[
50
+ gr.Textbox(label="Predicted Diseases (Top 3)"),
51
+ gr.Textbox(label="Care Advice")
52
+ ],
53
+ title="Home Plant Health Monitor",
54
+ description=(
55
+ "Upload a photo of your plant's leaf to diagnose diseases and receive care recommendations. "
56
+ "This app uses a fine-tuned image-classification model on common plant diseases."
57
+ ),
58
+ examples=[
59
+ ["example_images/leaf_healthy.jpg"],
60
+ ["example_images/leaf_spot.jpg"]
61
+ ],
62
+ allow_flagging="never"
63
+ )
64
+
65
+ if __name__ == "__main__":
66
+ iface.launch(server_name="0.0.0.0", server_port=7860)