import os import gradio as gr from inference.inference import load_disease_pipeline, diagnose """ Step 5: Gradio demo for disease-only model with example images """ # load your published model or local checkpoint pipe = load_disease_pipeline("linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification") # Path to examples folder examples = [ ["Plants/Unhealthy_crop_1.jpg"], ["Plants/Unhealthy_crop_2.jpg"], ["Plants/Unhealthy_crop_3.jpg"], ["Plants/Unhealthy_crop_4.jpg"], ["Plants/Unhealthy_crop_5.jpg"], ["Plants/Healthy_crop_1.jpg"], ["Plants/Healthy_crop_2.jpg"] ] iface = gr.Interface( fn=lambda img: diagnose(img, pipe), inputs=gr.Image(type="pil", label="Upload Leaf Image"), outputs=[ gr.Textbox(label="Disease Predictions (Top 3)"), gr.Textbox(label="Care Advice") ], title="Plant Disease Monitor", description="Upload a crop leaf photo to detect diseases using a fine-tuned model.", examples=examples, allow_flagging="never" ) if __name__ == "__main__": iface.launch()